I. L. Karle, S. Ranganathan et al.
silica gel. Elution with benzene/ethyl acetate (1:1) afforded 0.090 g
N. R. Champness, A. Garau, V. Lippolis, C. Wilson, M. Schroder,
Chem. Commun. 2003, 312–313.
[16] C. Liang, K. Mislow, J. Am. Chem. Soc. 1994, 116, 3588–3592.
[17] T. Sekiya, H. V. Ormondt, H. G. Khorana, J. Biol. Chem. 1975, 250,
1087–1098.
[18] a) F. J. Schmitz, M. B. Ksebati, J. S. Chang, J. L. Wang, M. B. Hos-
sain, D. Helm, M. H. Engel, A. Serban, J. A. Silfer, J. Org. Chem.
1989, 54, 3463–3472; b) T. Ishida, Y. In, F. Shinozaki, M. Doi, D. Ya-
mamoto, Y. Hamada, T. Shioiri, M. Kamigauchi, M. Sugiura, J. Org.
Chem. 1995, 60, 3944–3952; c) P. Wipf, P. C. Fritch, S. J. Geib, A. M.
Sefler, J. Am. Chem. Soc. 1998, 120, 4105–4112.
(19%) of 9. Rf =0.32 (PhH/EtOAc 1:1); m.p. 130–1358C; [a]D31:6
=
ꢀ4.5000 (c=0.28 in CHCl3); 1H NMR (300 MHz, CDCl3): d=2.30 (m,
12H; CH2S (8H), CH2N(4H)), 3.68 (m, 6H; COOMe), 4.80 (m, 2H;
aCH), 7.50 ppm (m, 20H; Ar-H+CONH); IR (KBr): n˜ =3239, 1744,
1639, 1538 cmꢀ1; MS (ESI): m/z (%): 833 (45) [M+H+].
XI. Reaction of 9 with AgBF4: preparation of a monosilver complex:
The reaction of silver (I) tetrafluoro borate (15.3 mg, 0.0793 mmol) and 9
(22 mg, 0.0264 mmol), as described in procedure IV, afforded the com-
plex. M.p. 150–1558C; MS (ESI): m/z (%): 939, 941 (5) [M+Ag+].
[19] M. B. Hossain, D. Helm, J. Antel, G. M. Sheldrick, S. K. Sanduja,
A. J. Weinheimer, Proc. Natl. Acad. Sci. USA 1988, 85, 4118–4122.
[20] a) M. Mascal, I. G. Wood, M. J. Begley, A. S. Batsanov, T. Wals-
grove, A. M. Z. Slawin, D. J. Williams, A. F. Drake, G. Siligardi, J.
Chem. Soc. Perkin Trans. 1 1996, 2427–2433; b) M. Mascal, C. J.
Moody, A. I. Morrell, A. M. Z. Slawin, D. J. Williams, J. Am. Chem.
Soc. 1993, 115, 813–814.
Acknowledgements
I.L.K. is grateful to the National Institutes of Health Grant GM-30902
and to the Office of Naval Research for financial support. P.V. and S.R.
are grateful to the Council of Scientific and Industrial Research, New
Delhi, for the award of a Fellowship and financial assistance.
[21] F. R. Fronczek, S. T. Davis, L. M. B. Gehrig, R. D. Gandour, Acta
Crystallogr. Sect. C 1987, C43, 1615–1618.
[22] Cystine, harboring generally an orthogonally disposed S–S bridge,
plays a major role in the crafting of topological features in proteins.
An attractive goal would be to design bihelical structures containing
an S–S bridge in the hybrid peptide backbone that can assemble to
nanotubes.
[1] a) D. L. An, T. Nakano, A. Orita, J. Otera, Angew. Chem. 2002, 114,
179–181; Angew. Chem. Int. Ed. 2002, 41, 171–173; b) U. Guo, J. D.
Bradshaw, C. A. Tessier, W. J. Youngs, J. Chem. Soc. Chem.
Commun. 1994, 243–244; c) P. N. W. Baxter, J. Org. Chem. 2001, 66,
4170–4179; d) K. Nozaki, T. Terakawa, H. Takaya, T. Hiyama,
Angew. Chem. 1998, 110, 138–140; Angew. Chem. Int. Ed. 1998, 37,
131–133; e) I. L. Karle, D. Ranganathan, V. Haridas, J. Am. Chem.
Soc. 1996, 118, 10916—10917; f) D. Ranganathan, V. Haridas, R.
Nagaraj, I. L. Karle, J. Org. Chem. 2000, 65, 4415–4422.
[2] J. K. Judice, S. J. Keipert, D. J. Cram, J. Chem. Soc. Chem. Commun.
1993, 1323–1325.
[23] The desired 4 has diphenic acid and cystine in the ratio of 2:2. De-
tailed chromatography of the reaction mixture afforded, in addition
to 4 (34%), minor products, in which this ratio was 1:1 (i; 4.5%),
3:3 (ii; 3.5%) and 4:4 (iii; 2.3%). i: (Rf =0.38 (PhH/EtOAc 8:2);
m.p. 215–218o C; [a]D27 =ꢀ266.688 (c=0.16 in CHCl3); 1H N MR
(200 MHz, CDCl3): d=3.00 (m, 2H; bCH2), 3.45 (dd, J=13.3,
3.1 Hz, 2H; bCH2), 3.80 (s, 6H; COOMe), 4.75 (m, 2H; aCH), 7.35
(m, 8H; Ar-H), 7.75 ppm (d, J=7.0 Hz, 2H; CONH); 13C N MR
(75.47 MHz, CDCl3): d=41.25, 52.45, 52.86, 126.67, 127.42, 130.59,
131.12, 132.66, 141.62, 168.15, 170.48 ppm; IR (KBr): n˜ =3396, 3341,
1744, 1733, 1666, 1644, 1523, 1219 cmꢀ1; MS (ESI): m/z (%): 475
(100) [M+H+], 497 (60) [M+Na+]; HRMS calcd for C22H22N2O6S2:
474.543; found: 474.0921; elemental analysis calcd (%) for
C22H22N2O6S2 (474.543): C 55.68, H 4.67, N5.90, S 13.51; found: C
55.58, H 4.94, N5.71, S 13.15). Compound i afforded rigid crystals
from methanol. Crystal structure was established by X-ray crystal-
lography. In the absence of any usual interactions, the rigid structure
is suggested to be maintained by weak attractive forces, disposed in
all the three directions (I. L. Karle, P. Venkateshwarlu, S. Rangana-
than, Peptide Science 2006, 84, 502–507). ii: (Rf =0.49 (PhH/EtOAc
1:4); m.p. 115–1188C; 1H NMR (200 MHz, CDCl3 +[D]6DMSO):
d=2.75 (m, 12H; bCH2), 3.59 (m, 18H; COOMe), 4.54 (m, 6H;
aCH), 7.29 (m, 24H; Ar-H), 8.72 ppm (m, 6H; CONH); MS
(MALDI-TOF): m/z (%): 1446 (100) [M+Na+], 1462 (30) [M+K+]).
iii: (Rf =0.25 (PhH/EtOAc 1:4); m.p. 115–1208C; 1H N MR
(300 MHz, CDCl3): d=2.93 (br, 16H; bCH2), 3.69 (m, 24H;
COOMe), 4.55 (br, 8H; aCH), 7.59 ppm (m, 40H; Ar-H+CONH);
MS (MALDI-TOF): m/z (%): 1921 (17) [M+Na+]). Efforts to
secure crystals of ii and iii did not succeed.
[3] Y. Tanaka, H. Katagiri, Y. Furusho, E. Yashima, Angew. Chem.
2005, 117, 3935–3938; Angew. Chem. Int. Ed. 2005, 44, 3867–3870.
[4] C. Reuter, W. Wienand, C. Schmuck, F. Vogtle, Chem. Eur. J. 2001,
7, 1728–1733.
[5] a) C. Bucher, D. Seidel, V. Lynch, J. L. Sessler, Chem. Commun.
2002, 328–329; b) E. Vogel, M. Broring, J. Fink, D. Rosen, H.
Schmickler, J. Lex, K. W. K. Chan, Y. D. Wu, D. A. Plattner, M.
Nendel, K. N. Houk, Angew. Chem. 1995, 107, 2705–2709; Angew.
Chem. Int. Ed. Engl. 1995, 34, 2511–2514; c) J. L. Sessler, D. Seidel,
A. Gebauer, V. Lynch, K. A. Abboud, J. Heterocycl. Chem. 2001, 38,
1419–1424; d) M. Broring, J. Jendrny, L. Zander, H. Schmickler, J.
Lex, Y.-D. Wu, M. Nendel, J. Chen, D. A. Plattner, K. N. Houk, E.
Vogel, Angew. Chem. 1995, 107, 2709–2711; Angew. Chem. Int. Ed.
Engl. 1995, 34, 2515–2517; e) H. Rath, J. Sankar, V. Prabhuraja,
T. K. Chandrashekar, B. S. Joshi, R. Roy, Chem. Commun. 2005,
3343–3345.
[6] N. Sprutta, L. Latos-Grazynski, Chem. Eur. J. 2001, 7, 5099–5112.
[7] A. Werner, M. Michels, L. Zander, J. Lex, E. Vogel, Angew. Chem.
1999, 111, 3866–3870; Angew. Chem. Int. Ed. 1999, 38, 3650–3653.
[8] J. L. Sessler, S. J. Weghorn, V. Lynch, M. R. Johnson, Angew. Chem.
1994, 106, 1572; Angew. Chem. Int. Ed. Engl. 1994, 33, 1509–1512.
[9] R. Koerner, M. M. Olmstead, A. Ozarowski, S. L. Phillips, P. M. V.
Calcar, K. Winkler, A. L. Balch, J. Am. Chem. Soc. 1998, 120, 1274–
1284.
[24] a) Initial efforts to incorporate the second cystine residue by the
linking of 2 presented problems. DCC/SuOH afforded 32% of bis-
imide (iv). Rf =0.37 (PhH/EtOAc 96:4); m.p. 120–1258C; [a]D31:6
=
ꢀ353.630 (c=0.135 in DMSO); 1H NMR (300 MHz, CDCl3): d=
3.46 (dd, J=15.0, 10.5 Hz, 2H; bCH2), 3.55 (dd, J=15.0, 4.5 Hz, 2H;
bCH2), 3.75 (s, 6H; COOMe), 5.82 (dd, J=10.5, 4.5 Hz, 2H; aCH),
7.65 ppm (m, 16H; aromatic); 13C NMR (75.47 MHz, [D]6DMSO):
d=38.05, 52.42, 58.16, 128.78, 130.77, 132.71, 133.39, 133.88, 168.44,
170.25 ppm; IR (KBr): n˜ =3054, 2943, 2358, 1743, 1693, 1654, 1587,
1241 cmꢀ1; MS (FAB): m/z (%): 681 (32) [M+H+], 340 (34) [(M/2)+];
HRMS: calcd for C36H28N2O8S2: 680.1365; found: 680.1380. Com-
pound iv afforded colorless needles from chloroform/hexane. X-ray
crystallography confirmed the structure assigned. The reaction af-
forded only 3.7% of iv . b) Activation of the acid with ethyl chloro-
formate followed by addition with cystine di-OMe gave a complex
[10] P. Comba, A. Fath, T. W. Hambley, D. T. Richens, Angew. Chem.
1995, 107, 2047–2050; Angew. Chem. Int. Ed. Engl. 1995, 34, 1883–
1885.
[11] A. Hori, K. Yamashita, T. Kusukawa, A. Akasaka, K. Biradha, M.
Fujita, Chem. Commun. 2004, 1798–1799.
[12] C. Mazet, L. Gade, Chem. Eur. J. 2002, 8, 4308–4318.
[13] V. Berl, I. Huc, R. G. Khoury, J. M. Lehn, Chem. Eur. J. 2001, 7,
2810–2820.
[14] K. Kato, K. Aburaya, M. Matsumoto, N. Tohnai, M. Miyata, Chem.
Lett. 2003, 32, 952–953.
[15] a) C. J. Horn, A. J. Blake, N. R. Champness, V. Lippolis, M. Schrod-
er, Chem. Commun. 2003, 1488–1489; b) C. J. Horn, A. J. Blake,
4262
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2007, 13, 4253 – 4263