produces the cationic intermediate B7a (stabilized by the electron
donation from palladium), which as a result of hydride shift
followed by the regeneration of Pd(0) finally affords the
isoquinolone 3. A mechanism involving generation of a nitrene-
like intermediate,7b although it cannot be fully ruled out, would
lead to the formation of a related product as a result of Curtius
rearrangement.11c Also the observation that o-alkynyl benzamide
is unreactive under the conditions studied (i.e. Pd/C–PPh3–CuI or
PPh3–CuI at 80 uC for 24 h) disfavours the intermediacy of this
amide that may be generated in situ. Nevertheless, a pathway
similar to that shown in Scheme 2 can also be proposed for the
formation of isoindolinone where nucleophilic addition of the
azide to the C–C triple bond followed by the loss of dinitrogen
produces the cationic intermediate corresponding to the five-
membered ring product.12
5 For the scope and limitations on the use of azides in industrial
production along with the implementation of safety measures, see:
J.-P. Hagenbuch, CHIMIA Int. J. Chem., 2003, 57, 773.
6 (a) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless,
Angew. Chem., Int. Ed., 2002, 41, 2596; (b) C. W. Tornøe, C. Christensen
and M. Meldal, J. Org. Chem., 2002, 67, 3057; (c) S. Kamijo, T. Jin,
Z. Huo and Y. Yamamoto, J. Am. Chem. Soc., 2005, 125, 7786; (d)
C. Chowdhury, S. B. Mandal and B. Achari, Tetrahedron Lett., 2005,
46, 8531.
7 (a) D. J. Gorin, N. R. Davis and F. D. Toste, J. Am. Chem. Soc., 2005,
127, 11260; (b) T. Bach, B. Schlummer and K. Harms, Synlett, 2000,
1330.
8 (a) N. G. Kundu, M. Pal and C. Chowdhury, J. Chem. Res. (S), 1993,
432; (b) A. Lei, M. Srivastava and X. Zhang, J. Org. Chem., 2002, 67,
1969; (c) S. Urgaonkar and J. G. Verkade, J. Org. Chem., 2004, 69,
5752; (d) A. S. Batsanov, J. C. Collings, I. J. S. Fairlamb, J. P. Holland,
J. A. K. Howard, Z. Lin, T. B. Marder, A. C. Parsons, R. M. Ward and
J. Zhu, J. Org. Chem., 2005, 70, 703; (e) Formation of 10–12% of
dimeric product was observed when arylalkynes were used.
9 Spectral data for selected compounds: 3a; brown solid; mp 88–90 uC;
nmax (KBr)/cm21 3284 and 1736; dH (400 MHz; CDCl3; Me4Si) 1.60
(6 H, s, 2 6 Me), 1.91 (1 H, br s, OH), 6.62 (1 H, s, CHLC), 7.43 (1 H,
d, J 6.8 Hz, ArH), 7.47 (1 H, t, J 6.8 Hz, ArH), 7.70 (1 H, t, J 7.5 Hz,
ArH) and 8.27 (1 H, d, J 7.5 Hz, ArH); dC (50 MHz; CDCl3; Me4Si)
28.2 (2C), 83.9, 99.9, 125.9, 126.4, 128.1, 129.5, 131.9, 134.9, 137.2 and
161.7; m/z (CI Mass) 205 (M + 1, 100%), 187 (M+ 2 18, 30%); 3g;
brown solid; mp 54–56 uC; nmax (KBr)/cm21 3423, 2243 and 1723; dH
(400 MHz; CDCl3; Me4Si) 2.14–2.07 (2 H, m, CH2), 2.51–2.42 (2 H, m,
CH2), 2.72 (2 H, t, J 7.2 Hz), 6.36 (1 H, s, CHLC), 7.38 (1 H, d, J 7.8 Hz,
ArH), 7.49 (1 H, t, J 7.8 Hz, ArH), 7.70 (1 H, t, J 7.3 Hz, ArH), 8.26
(1 H, d, J 7.3 Hz, ArH); dC (50 MHz; CDCl3; Me4Si) 16.3, 22.6, 32.1,
104.4, 120.2, 125.3, 128.1, 129.5 (2C), 134.9 (2C), 136.9 and 162.5; m/z
(CI Mass) 214 (M + 1,100%).
In summary, we have developed a simple method to afford
3-substituted 1(2H)-isoquinolones that are not easily available
from the previously known methodologies. The use of Pd/C–Cu
catalysis is the key of this new transformation. This mild process
was found to be general and highly regioselective, affording an
array of compounds of potential biological significance.13,14
We thank Dr R. Rajagopalan and Prof. J. Iqbal for their
encouragement and analytical group for spectral data. We also
thank Mr P. Annamalai for biological assays.
Notes and references
10 Crystallographic data for 3j: single crystal from methanol, C14H14N2O2,
˚
M 5 242.28, orthorhombic, space group Pca21, a 5 23.78(1) A,
§ CCDC 630060. For crystallographic data in CIF or other electronic
format see DOI: 10.1039/b617823e
3
˚
˚
˚
b 5 4.560(3) A, c 5 11.134(7) A, V 5 1207(1) A and Z 5 4,
rcalc 5 1.333 Mg m23, T 5 298 K, m 5 0.907 cm21, 13936 processed
reflections, 1401 unique reflections, Rint 5 3.47% and final R
factor 5 0.067 (all data).
1 For general reviews, see: (a) M. E. Fakley, J. Organomet. Chem., 1985,
13, 345; (b) R. C. Larock and W. W. Leong, in Comprehensive Organic
Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford,
1991, Vol. 4, p. 269; (c) Y. Yamamoto and U. Radhakrishnan, Chem.
Soc. Rev., 1999, 28, 199; (d) F. Alonso, I. P. Beletskaya and M. Yus,
Chem. Rev., 2004, 104, 3079.
11 (a) B. M. Trost and F. D. Toste, J. Am. Chem. Soc., 1996, 118, 6305.
For activation of triple bond by HPdX, see: (b) C. H. Oh, C. Y. Rhim,
H. H. Jung and S. H. Jung, Bull. Korean Chem. Soc., 1999, 20, 643; (c)
See for example, N. Briet, M. H. Brookes, R. J. Davenport, F. C. A.
Galvin, P. J. Gilbert, S. R. Mack and V. Sabin, Tetrahedron, 2002, 58,
5761.
2 S. Cacchi and G. Fabrizi, Chem. Rev., 2005, 105, 2873.
3 (a) T. Yao and R. C. Larock, J. Org. Chem., 2005, 70, 1432; (b)
M.-J. Wu, L.-J. Chang, L.-M. Wei and C.-F. Lin, Tetrahedron,
1999, 55, 13193; (c) H. Sashida and A. Kawamukai, Synthesis,
1999, 1145; (d) A. Nagarajan and T. R. Balasubramanian,
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 1989,
28, 67. For a review on other synthetic methods, see: (e)
V. A. Glushkov and Y. V. Shklyaev, Chem. Heterocycl. Compd.,
2001, 37, 663.
4 (a) T. Matsui, T. Sugiura, H. Nakui, S. Iguch, S. Shigeoka, H. Tukedu,
T. Odagaki, Y. Ushio, K. Ohmoto, M. Iwamani, S. Yamazaki, T. Arai
and M. Kawamura, J. Med. Chem., 1992, 35, 3307; (b) S. W. Li,
M. G. Nair, D. M. Edwards, R. L. Kisluick, Y. Gaument, I. K. Dev,
D. S. Duch, J. Humphreys, G. K. Smith and R. Ferone, J. Med. Chem.,
1991, 34, 2746. For a review, see: (c) F. V. Bambeke, J.-M. Michot,
J. V. Eldere and P. M. Tulkens, Clin. Microbiol. Infect., 2005, 11,
256.
12 In an alternative mechanism, intermediate A adds HPdI to generate two
vinyl palladium intermediates. Intramolecular azide addition to the
double bond generates two triazines. Loss of nitrogen results in two
aziridines. The aziridines then open to give vinyl palladium intermediates
corresponding to the five- and six-membered ring products that finally
afford 3 and 4 in the presence of triethylamine (which perhaps acts as a
reducing agent). For intramolecular cycloaddition of an azide across a
double bond leading to an aziridine, see: A. Padwa, A. Ku, H. Ku and
A. Mazzu, J. Org. Chem., 1978, 43, 66 and G. Broggini, L. Garanti,
G. Molteni and T. Pilati, Tetrahedron: Asymmetry, 2001, 12, 1201.
13 Compound 3f showed anticancer activity with an average GI50 of 28.32
on a tested panel of cancer cell lines [e.g. HT29 (colon), H460 (lung),
LoVo (colon)] (see Electronic Supplementary Information).
14 For in vitro antitumour activity of compounds 3m–n against various cell
lines, see: W.-J. Cho, M.-J. Park, B.-H. Chung and C.-O. Lee, Bioorg.
Med. Chem. Lett., 1998, 8, 41.
1968 | Chem. Commun., 2007, 1966–1968
This journal is ß The Royal Society of Chemistry 2007