Communications
Keywords: Brønsted acids · ion-pair catalysis · piperidines ·
.
reduction · transfer hydrogenation
[1] Reviews: a) R. Noyori, Angew. Chem. 2002, 114, 2108; Angew.
Chem. Int. Ed. 2002, 41, 2008; b) W. S. Knowles, Angew. Chem.
2002, 114, 2096; Angew. Chem. Int. Ed. 2002, 41, 1998; c) H. U.
Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer,
Adv. Synth. Catal. 2003, 345, 103; d) W. Tang, X. Zhang, Chem.
Rev. 2003, 103, 3029; e) T. Ohkuma, M. Kitamura, R. Noyori in
Catalytic Asymmetric Synthesis, 2nd ed. (Ed.: I. Ojima), Wiley-
VCH, New York, 2000, chap. 1; f) T. Ohkuma, R. Noyori in
Comprehensive Asymmetric Catalysis, Suppl.
1 (Eds.: E. N.
Jacobsen, A. Pfaltz, H. Yamamoto), Springer, New York, 2004,
p. 43; g) H. Nishiyama, K. Itoh in Catalytic Asymmetric Synthesis,
2nd ed. (Ed.: I. Ojima), Wiley-VCH, New York, 2000, chaps. 1
and 2; a review of reductions of heterocyclic compounds: h) F.
Glorius, Org. Biomol. Chem. 2005, 3, 4171.
Scheme 3. a) EtOH, 508C, 12 h, then 1408C, 2 h;[9] b) (S)-3 f (5 mol%),
2 (4 equiv), benzene, 508C; c) Ref. [7e].
Regarding the mechanism of the reduction, we assume
that, in the first step, the pyridine 1 or 5 is activated through
catalytic protonation by the Brønsted acid 3, resulting in the
formation of a chiral ion pair A (Scheme 4). A subsequent
[2] Metal-catalyzed enantioselective reductions of pyridines: a) C. Y.
Legault, A. B. Charette, J. Am. Chem. Soc. 2005, 127, 8966; b) A.
Lei, M. Chen, M. He, X. Zhang, Eur. J. Org. Chem. 2006, 4343; an
efficient diastereoselective pyridine reduction: c) F. Glorius, N.
Spielkamp, S. Holle, R. Goddard, C. W. Lehmann, Angew. Chem.
2004, 116, 2910; Angew. Chem. Int. Ed. 2004, 43, 2850.
[3] Reviews: a) J. W. Daly, J. Nat. Prod. 1998, 61, 162; b) D. OꢀHagan,
Nat. Prod. Rep. 2000, 17, 435; c) J. W. Daly, T. F. Spande, H. M.
Garraffo, J. Nat. Prod. 2005, 68, 1556; d) J. P. Michael, Nat. Prod.
Rep. 2005, 22, 603.
[4] a) M. Rueping, C. Azap, E. Sugiono, T. Theissmann, Synlett 2005,
2367; b) M. Rueping, E. Sugiono, C. Azap, T. Theissmann, M.
Bolte, Org. Lett. 2005, 7, 3781; c) M. Rueping, T. Theissmann,
A. P. Antonchick, Synlett 2006, 1071; d) M. Rueping, A. P.
Antonchick, T. Theissmann, Angew. Chem. 2006, 118, 3765;
Angew. Chem. Int. Ed. 2006, 45, 3683; e) M. Rueping, A. P.
Antonchick, T. Theissmann, Angew. Chem. 2006, 118, 6903;
Angew. Chem. Int. Ed. 2006, 45, 6751; f) M. Rueping, E. Sugiono,
C. Azap, Angew. Chem. 2006, 118, 2679; Angew. Chem. Int. Ed.
2006, 45, 2617; g) M. Rueping, C. Azap, Angew. Chem. 2006, 118,
7996; Angew. Chem. Int. Ed. 2006, 45, 7832; h) M. Rueping, W.
Ieawsuwan, A. P. Antonchick, B. J. Nachtsheim, Angew. Chem.
2007, 119, 2143; Angew. Chem. Int. Ed. 2007, 46, 2097; i) M.
Rueping, E. Sugiono, T. Theissmann, A. Kuenkel, A. Köckritz, A.
Pews Davtyan, N. Nemati, M. Beller, Org. Lett. 2007, 9, 1065;
j) M. Rueping, E. Sugiono, S. A. Moreth, Adv. Synth. Catal. 2007,
349, 759.
[5] Other binol phosphate catalyzed reactions: a) T. Akiyama, J. Itoh,
K. Yokota, K. Fuchibe, Angew. Chem. 2004, 116, 1592; Angew.
Chem. Int. Ed. 2004, 43, 1566; b) D. Uraguchi, M. Terada, J. Am.
Chem. Soc. 2004, 126, 5356; c) D. Uraguchi, K. Sorimachi, M.
Terada, J. Am. Chem. Soc. 2004, 126, 11804; d) T. Akiyama, H.
Morita, J. Itoh, K. Fuchibe, Org. Lett. 2005, 7, 2583; e) T.
Akiyama, Y. Saitoh, H. Morita, K. Fuchibe, Adv. Synth. Catal.
2005, 347, 1523; f) G. B. Rowland, H. Zhang, E. B. Rowland, S.
Chennamadhavuni, Y. Wang, J. C. Antilla, J. Am. Chem. Soc.
2005, 127, 15696; g) M. Terada, K. Sorimachi, D. Uraguchi,
Synlett 2006, 13; h) S. Hoffmann, A. M. Seayad, B. List, Angew.
Chem. 2005, 117, 7590; Angew. Chem. Int. Ed. 2005, 44, 7424; i) T.
Akiyama, Y. Tamura, J. Itoh, H. Morita, K. Fuchibe, Synlett 2006,
141; j) R. I. Storer, D. E. Carrera, Y. Ni, D. W. C. MacMillan, J.
Am. Chem. Soc. 2006, 128, 84; k) J. Seayad, A. M. Seayad, B. List,
J. Am. Chem. Soc. 2006, 128, 1086; l) M. Terada, K. Machioka, K.
Sorimachi, Angew. Chem. 2006, 118, 2312; Angew. Chem. Int. Ed.
2006, 45, 2254; m) S. Mayer, B. List, Angew. Chem. 2006, 118,
4299; Angew. Chem. Int. Ed. 2006, 45, 4193; n) J. Itoh, K. Fuchibe,
T. Akiyama, Angew. Chem. 2006, 118, 4914; Angew. Chem. Int.
Ed. 2006, 45, 4796; o) D. Nakashima, H. Yamamoto, J. Am. Chem.
Soc. 2006, 128, 9626; p) A. Hasegawa, Y. Naganawa, M. Fushimi,
Scheme 4. Postulated mechanism for the enantioselective organocata-
lytic reduction of pyridines.
first hydride transfer from the Hantzsch ester 2 gives the
adduct B, which is transformed into the iminium ion C
through an acid-catalyzed isomerization. A second hydride
transfer results in the desired product 4 or 6, and the binol
phosphate catalyst 3 is regenerated.
In summary, we have developed the first enantioselective
reduction of pyridines catalyzed by Brønsted acids. The
products, hexahydroquinolinones and tetrahydropyridines,
are isolated in good yields and with excellent enantioselec-
tivities (up to 92% ee). These products serve as starting
compounds for the synthesis of various natural products. As
only metal-catalyzed enantioselective hydrogenations of
pyridines, which did not give the valuable products described
herein and yielded lower enantioselectivities, were described
previously, our newly developed metal-free Brønsted acid
catalyzed procedure represents an important advance.
Received: March 16, 2007
Published online: May 11, 2007
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 4562 –4565