C O M M U N I C A T I O N S
Scheme 3. Completion of the Synthesisa
Scheme 2. Preparation of the Building Blocksa
a Reagents and conditions: (a) [RuCl2(cymene)]2, ethoxyacetylene; then
7, TsOH (54%); (b) SiO2, 125 °C (66%); (c) 5, Pd(PPh3)4, CuTC, DMF
(32%; 92% based on recovered 6); (d) Grubbs’ II, PhCH3 (27%); (e) 3:6:1
formic acid/THF/H2O (84%).
transition-metal-catalyzed reactions operating on halogenated sub-
strates. The final Ru-catalyzed ring-closing metathesis, by contrast,
underscores the usefulness of relay tactics for the synthesis of highly
unsaturated macrolactones where several potential initiation sites
exist. Further elaboration of our general strategy should give rise
to archazolids A and C as well as a multitude of structurally
simplified and biologically interesting analogues.
Acknowledgment. This work was supported by National
Institutes of Health Grant R01 GM067636. We thank Dr. Steven
Diver (University of Buffalo) for helpful discussions.
Supporting Information Available: Experimental procedures and
compound characterization data. This material is available free of charge
References
(1) (a) Sasse, F.; Steinmetz, H.; Ho¨fle, G.; Reichenbach, H. J. Antibiot. 2003,
56, 520-525. (b) Hassfeld, J.; Fare`s, C.; Steinmetz, H.; Carlomagno, T.;
Menche, D. Org. Lett. 2006, 8, 4751-4754.
a Reagents and conditions: (a) (S)-alpine borane, THF, 40 °C (89%,
>20:1 dr); (b) TIPSCl, imidazole, DMAP, CH2Cl2 (93%); (c) HOAc, THF/
H2O (97%); (d) Dess-Martin periodinane, NaHCO3, CH2Cl2; (e) PPh3,
CBr4, K2CO3, CH2Cl2 (75% for two steps); (f) MeLi, CuI, Et2O; I2 (77%);
(g) TBAF, THF; (h) Boc2O, pyridine, DMAP (99% for two steps); (i)
RuCp(MeCN)3PF6, 3-buten-1-ol, acetone (88%); (j) Dess-Martin perio-
dinane, NaHCO3, CH2Cl2; (k) NaClO2, NaH2PO4, 2-methyl-2-butene,
tBuOH, H2O (99% for two steps); (l) CDI, MeNH2 (88%); (m) DIBAL-H,
PhCH3, THF (80%); (n) (-)-MeOB(Ipc)2, KOtBu, nBuLi, trans-2-butene,
THF (90%); (o) DIBAL-H, CH2Cl2 (96%); (p) Dess-Martin periodinane,
NaHCO3, CH2Cl2; (q) 16, Bu2BOTf, Et3N, CH2Cl2 (76% for two steps);
(r) MeONHMe‚HCl, Me3Al, THF (80%); (s) TBSCl, imidazole, CH2Cl2
(89%); (t) nBuLi, diethylethylphosphonate, THF (95%); (u) 19, Ba(OH)2,
40:1 THF/H2O (79%); (v) NaBH4, MeOH (92%); (w) Me3OBF4, proton
sponge, CH2Cl2 (89%); (x) nBuLi, Me3SnCl, THF.
(2) Ho¨fle, G.; Reichenbach, H.; Sasse, F.; Steinmetz, H. German Patent DE
41 42 951 C1, 1993.
(3) Menche, D.; Hassfeld, J.; Li, J.; Rudolph, S. J. Am. Chem. Soc. 2007,
129, 6100-6101.
(4) Menche, D.; Hassfeld, J.; Steinmetz, H.; Huss, M.; Wieczorek, H.; Sasse,
F. Eur. J. Org. Chem. 2007, 7, 1196-1202.
(5) Miller, A. K.; Trauner, D. Synlett 2006, 14, 2295-2316.
(6) Grubbs, R. H. Tetrahedron 2004, 60, 7117-7140.
(7) For recent examples of RCM in macrolide synthesis, see: (a) Maleczka,
R. E., Jr.; Terrell, L. R.; Geng, F.; Ward, J. S., III. Org. Lett. 2002, 4,
2841-2844. (b) Va, P.; Roush, W. R. J. Am. Chem. Soc. 2006, 128,
15960-15961. (c) Fu¨rstner, A.; Nevado, C.; Tremblay, M.; Chevrier, C.;
Teply, F.; A¨ıssa, C.; Waser, M. Angew. Chem., Int. Ed. 2006, 45, 5837-
5842.
(8) (a) Hoye, T. R.; Jeffrey, C. S.; Tennakoon, M. A.; Wang, J.; Zhao, H. J.
Am. Chem. Soc. 2004, 126, 10210-10211. (b) Wallace, D. J. Angew.
Chem., Int. Ed. 2005, 44, 1912-1915. (c) Wang, X.; Bowman, E. J.;
Bowman, B. J.; Porco, J. A. Angew. Chem., Int. Ed. 2004, 43, 3601-
3605.
(9) Trost, B. M.; Gunzner, J. L. J. Am. Chem. Soc. 2001, 123, 9449-9450.
(10) Tanino, K.; Arakawa, K.; Satoh, M.; Iwata, Y.; Miyashita, M. Tetrahedron
Lett. 2006, 47, 861-864.
(11) Trost, B. M.; Toste, F. D. Tetrahedron Lett. 1999, 40, 7739-7743.
(12) Schmidt, U.; Gleich, P.; Griesser, H.; Utz, R. Synthesis 1986, 12, 992-
998.
(13) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919-5923.
(14) Beaudry, C. M.; Trauner, D. Org. Lett. 2002, 4, 2221-2224.
(15) Evans, D. A.; Black, W. C. J. Am. Chem. Soc. 1993, 115, 4497-4513.
(16) Relative stereochemistry was confirmed by analysis of corresponding
acetonide using 13C chemical shifts and coupling constants in 1H NMR
(Rychnovsky, S. D.; Skalitzky, D. J. Tetrahedron Lett. 1990, 31, 945-
948.) (see Supporting Information).
(17) Kita, Y.; Maeda, H.; Omori, K.; Okuno, T.; Tamura, Y. Synlett 1993, 1,
273-274.
(18) (a) Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L. S. J.
Org. Chem. 1994, 59, 5905-5911. (b) Allred, G. D.; Liebeskind, L. S. J.
Am. Chem. Soc. 1996, 118, 2748-2749.
underwent a modified Liebeskind coupling with vinyl stannane 5
to yield the acyclic metathesis precursor 4b.18 It is interesting to
note that both palladium and copper were required to promote this
cross-coupling. The relay ring-closing metathesis using Grubbs’
second generation catalyst proceeded as planned to afford the
macrocycle in 27% yield. Finally, careful deprotection of the base-
sensitive macrolactone using aqueous formic acid gave archazolid
B (Scheme 3).
In summary, we have reported a highly convergent and stereo-
selective synthesis of archazolid B, which proceeds in only 19 steps
(longest linear sequence) starting from (S)-Roche ester and in less
than 40 total steps. Our synthesis of archazolid B includes several
transition-metal-catalyzed operations, including three very different
reactions promoted by Ru catalysts. The first two of these
demonstrate how well Ru-catalyzed reactions interface with other
JA0733033
9
J. AM. CHEM. SOC. VOL. 129, NO. 29, 2007 8961