5
[(g -C5H5)Co(SiMe3)(H)(C2H4)], 3 1H: −20.04 (s), 0.36 (s, Si(CH3)3), 1.00
(m, C2H4), 1.70 (m, C2H4), 2.14 (m, C2H4), 2.75 (m, C2H4), 4.21 (s, Cp),
1
13C{ H}: 7.1 (Si(CH3)3), 28.4 (C2H4), 31.9 (C2H4), 84.6 (Cp), 29Si: 24.0,
2JSiH = 35 Hz.
5
[(g -C5H5)Co(SiHEt2)(H)(C2H4)], 4 1H: −20.10 (s), 0.58 (q, 7 Hz,
SiCH2CH3), 1.08 (q, 7 Hz, SiCHꢀ2CHꢀ3), 1.09 (m, C2H4), 1.20 (t, 7 Hz,
SiCH2CH3), 1.32 (t, 7 Hz, SiCHꢀ2CHꢀ3), 1.77 (m, C2H4), 2.12 (m, C2H4),
1
2.77 (m, C2H4), 3.72 (s, SiH), 4.21 (s, Cp), 13C{ H}: 7.0 (SiCHꢀ2CHꢀ3),
7.1 (SiCH2CH3), 11.0 (SiCH2CH3), 11.6 (SiCHꢀ2CHꢀ3), 29.1 (C2H4), 32.4
(C2H4), 84.4 (Cp), 29Si: 28.7, 2JSiH = 25 Hz.
5
[(g -C5H5)Co(SiPh3)(H)(C2H4)], 5 1H: −18.95 (s), 1.23 (m, C2H4), 1.65 (m,
C2H4), 2.11 (m, C2H4), 2.79 (m, C2H4), 4.18 (s, Cp), 7.73 (m, Phm), 7.73
1
(m, Php), 7.97 (m, Pho), 13C{ H}: 31.9 (C2H4), 33.5 (C2H4), 86.1 (Cp), 29Si:
27.9.
5
[(g -C5H5)Co{Si(OMe)3}(H)(C2H4)], 6 1H: −20.14 (s), 1.86 (m, C2H4),
1.88 (m, C2H4), 2.09 (m, C2H4), 2.79 (m, C2H4), 3.57 (s, Si(OCH3)3), 4.45
1
(s, Cp), 13C{ H}: 30.7 (C2H4), 30.9 (C2H4), 50.1 (Si(OCH3)3), 86.1 (Cp),
29Si: −1.1, 2JSiH = 50 Hz.
5
[(g -C5H5)Co(SiClMePh)(H)(C2H4)], 7a (at 253 K): 1H: −18.95 (s), 0.69 (s,
Fig. 2 Variable temperature 1H NMR spectra of 7a and 7a in toluene-d8
in the hydride region.
CH3), 1.32 (m, C2H4), 1.65 (m, C2H4), 2.22 (m, C2H4), 2.79 (m, C2H4), 4.30
(s, Cp), 7.19 (m, Phm), 7.52 (m, Php), 7.68 (m, Pho), 13C{ H}: 9.2 (CH3),
1
32.0 (C2H4), 34.9 (C2H4), 86.3 (Cp), 128.0 (Phm), 128.4 (Php), 132.4 (Pho),
transition state theory; DG‡ = 59.3 kJ mol−1 for 7a to 7b
143.7 (Phi), 29Si: 57.8, 2JSiH = 35 Hz.
and DG‡ = 59.0 kJ mol−1303for 7b to 7a. These barriers are
5
1
[(g -C5H5)Co(SiClMePh)(H)(C2H4)], 7b (at 253 K): H: −19.26 (s), 0.77
303
(s, CH3), 1.44 (m, C2H4), 1.54 (m, C2H4), 2.26 (m, C2H4), 2.74 (m, C2H4),
similar to those determined previously for isomer interconversion
4.21 (s, Cp), 7.13 (m, Phm), 7.43 (m, Php), 7.65 (m, Pho), 13C { H}: 12.4
1
5
t
in [(g -C5H5)Rh(SiR3)(H)(C2H3CO2 Bu)] where the value of DG‡
(CH3), 32.9 (C2H4), 36.0 (C2H4), 85.8 (Cp), 128.1 (Phm), 128.8 (Php), 132.7
at 303 K is calculated to be 56.6 kJ mol−1.40 These experiments are
(Pho), 142.2 (Phi), 29Si: 59.7, 2JSiH = 35 Hz.
5
2
consistent with exchange between 7a and 7b via [(g -C5H5)Co(g -
HSiClMePh)(C2H4)] either as a transition state or an intermediate.
However, this mechanism is not the only one that could explain
the limited mechanistic data. We did not use line-shape analysis
because exchange is not the only factor contributing to the
variation of line shape with temperature in these cobalt complexes.
In conclusion, we have used NMR spectroscopy to study
1 K. Jonas, E. Deffense and D. Habermann, Angew. Chem., Int. Ed. Engl.,
1983, 22, 716.
2 A. Goswami, Y. Nie, T. Oeser and W. Siebert, Eur. J. Inorg. Chem.,
2006, 566.
3 J. K. Cammack, S. Jalisatgi, A. J. Matzger, A. Negron and K. P. C.
Vollhardt, J. Org. Chem., 1996, 61, 4798.
4 H. Wadepohl, W. Gulm, H. Pritzkow and A. Wolf, Chem.–Eur. J., 1996,
2, 1453.
5 W. A. Herrmann, C. E. Barnes, T. Zahn and M. L. Ziegler,
Organometallics, 1985, 4, 172.
6 W. D. Jones and R. M. Chin, J. Am. Chem. Soc., 1992, 114, 9851.
7 P. B. Hitchcock, M. J. Maah and J. F. Nixon, J. Chem. Soc., Chem.
Commun., 1986, 737.
8 S. B. Duckett, D. M. Haddleton, S. A. Jackson, R. N. Perutz, M.
Poliakoff and R. K. Upmacis, Organometallics, 1988, 7, 1526.
9 S. T. Belt, S. B. Duckett, D. M. Haddleton and R. N. Perutz,
Organometallics, 1989, 8, 748.
10 H. Wadepohl, A. Metz and H. Pritzkow, Chem.–Eur. J., 2002, 8, 1591.
11 J. Mu¨ller, C. Hirsch, A. L. Guo and K. Qiao, Z. Anorg. Allg. Chem.,
2000, 626, 2069.
12 J. Mu¨ller, P. E. Gaede, C. Hirsch and K. Qiao, J. Organomet. Chem.,
1994, 472, 329.
13 G. Kohl, R. Rudolph, H. Pritzkow and M. Enders, Organometallics,
2005, 24, 4774.
14 T. W. Bell, D. M. Haddleton, A. McCamley, M. G. Partridge, R. N.
Perutz and H. Willner, J. Am. Chem. Soc., 1990, 112, 9212.
15 T. W. Bell, M. Helliwell, M. G. Partridge and R. N. Perutz,
Organometallics, 1992, 11, 1911.
16 T. W. Bell, S. A. Brough, M. G. Partridge, R. N. Perutz and A. D.
Rooney, Organometallics, 1993, 12, 2933.
17 J. Mu¨ller, T. Akhnoukh, P. E. Gaede, A. L. Guo, P. Moran and K. Qiao,
J. Organomet. Chem., 1997, 541, 207.
18 D. M. Haddleton and R. N. Perutz, J. Chem. Soc., Chem. Commun.,
1985, 1372.
5
the formation of Co(III) silyl hydride complexes [(g -C5H5)-
5
Co(SiR3)(H)(C2H4)] by reaction of hydrosilanes with [(g -
C5H5)Co(C2H4)2] 1. The stability of these complexes is dependent
on the silane involved. When SiR3 is SiEt3, SiMe3 or SiHEt2, the
product can only be formed photochemically at low temperatures.
These species react very readily with the ethene released in the
initial reaction to regenerate 1. When SiR3 is SiPh3, the product is
formed thermally but the yield can be improved photochemically
at low temperature. When SiR3 is Si(OMe)3 or SiClMePh, the
reaction proceeds thermally at room temperature to yield 6 and 7,
respectively. Although 6 and 7 are observable at room temperature,
neither of them is stable for long periods, making it difficult to
isolate them as pure materials. The conversion can be improved
by removal of liberated ethene, as there is a clear equilibrium
5
between the products and [(g -C5H5)Co(C2H4)2]. Complex 7 exists
as two isomeric hydride species which interconvert with a free
energy of activation of ca. 59 kJ mol−1. In situ laser photolysis has
proved to be a valuable tool for the study of labile Co(III) silyl
hydrides. Contrary to our initial expectations some of the Co(III)
silyl hydrides are observable at room temperature.
19 S. T. Belt, D. M. Haddleton, R. N. Perutz, B. P. H. Smith and A. J.
Dixon, J. Chem. Soc., Chem. Commun., 1987, 1347.
20 S. B. Duckett and R. N. Perutz, J. Chem. Soc., Chem. Commun., 1991,
28.
21 S. B. Duckett and R. N. Perutz, Organometallics, 1992, 11, 90.
22 P. O. Bentz, J. Ruiz, B. E. Mann, C. M. Spencer and P. M. Maitlis,
J. Chem. Soc., Chem. Commun., 1985, 1374.
23 J. Ruiz and P. M. Maitlis, J. Chem. Soc., Chem. Commun., 1986, 862.
24 J. Ruiz, P. O. Bentz, B. E. Mann, C. M. Spencer, B. F. Taylor and P. M.
Maitlis, J. Chem. Soc., Dalton Trans., 1987, 2709.
25 Y. J. Kang, K. I. Kim, S. O. Kang, J. J. Ko, B. T. Heaton and J. V.
Barkley, J. Organomet. Chem., 1997, 532, 79.
Notes and references
† NMR data complexes 2–7 in toluene-d8 at 203 K (1H 400.13 MHz, 13
C
100.62 Hz, 29Si 79.49 MHz). 13C and 29Si NMR spectra were collected as
2D HMQC spectra with delays set both for short range and long range
coupling in the case of 13C spectra.
5
[(g -C5H5)Co(SiEt3)(H)(C2H4)],
2
1H: −20.25 (s), 0.68 (q,
7
Hz,
Si(CH2CH3)3), 1.10 (m, C2H4), 1.12 (t, 7 Hz, Si(CH2CH3)3), 1.61 (m,
C2H4), 2.02 (m, C2H4), 2.74 (m, C2H4), 4.28 (s, Cp), 13C{ H}: 9.8
1
(Si(CH2CH3)3), 10.3 (Si(CH2CH3)3), 28.7 (C2H4), 30.5 (C2H4), 84.2 (Cp),
29Si: 38.9, 2JSiH = 30 Hz.
This journal is
The Royal Society of Chemistry 2007
Dalton Trans., 2007, 2993–2996 | 2995
©