C. Aouf et al. / Tetrahedron 65 (2009) 5563–5570
5569
4.1.10. 3,4-Bis(trimethylsilyl)cyclohexene (36) and 3,6-
bis(trimethylsilyl)cyclohexene (37)
(m, 1H), 2.43–2.53 (m, 3H), 4.86–4.93 (m, 2H), 5.08–5.16 (m, 4H),
5.63–5.72 (m, 2H); 13C NMR (CDCl3, 75 MHz), major isomer,
(t), 27.5 (t), 28.7 (t), 28.9 (t), 29.2 (t), 30.5 (t), 43.0 (d), 46.6 (d), 87.7
(s), 114.0 (t), 118.1 (t), 136.0 (d), 137.7 (d), 141.0 (d), 143.3 (d), 177.4
(s). High resolution ESI-MS calcd for C16H22O2 [MþH]þ 247.1692;
found 247.1687.
d
¼25.1
From 1,3-cyclohexadiene. Colourless oil, bp 50 ꢀC, 0.2 Torr,
40.7 g, 0.18 mol, 30% overall yield. 37, (70%), 1H NMR (CDCl3,
300 MHz)
(CDCl3, 75 MHz)
d
¼0.02 (s, 9H), 1.33–1.82 (m, 3H), 5.60 (s, 1H); 13C NMR
d
¼ꢁ2.5 (ꢁ3.2) (q), 23.5 (24.6) (t), 26.6 (26.1) (d),
126.0 (126.5) (d). C12H26Si2, MS: m/z 226 (Mþ 80%), 211 (50), 152
(40), 138 (38), 78 (41), 73 (100), 45 (30). 36, (30%), 1H NMR (CDCl3,
Acknowledgements
300 MHz)
d
¼0.01 (s, 18H), 1.33–1.82 (m, 6H), 5.60 (br s, 2H); 13C
NMR (CDCl3, 75 MHz)
d
¼ꢁ2.1 (q), 20.7 (d), 22.1 (t), 23.8 (t), 26.9 (d),
We thank the CNRS for financial support and C.A. is grateful to
124.3 (d), 128.2 (d). C12H26Si2, MS: m/z 226 (Mþ 28%), 211 (20), 152
´
´
the ‘Association des Femmes Diplomees de l’Universite’ for a grant
(35), 137 (18), 78 (45), 73 (100), 45 (30).
´ `
´
(‘bourse Helene Delavaud’). Dr. Nicolas Ferre is kindly acknowl-
edged for their help.
4.1.11. 4,40-Bis(trimethylsilyl)bicyclohexyl-2,20-diene (38)
Colourless oil, mixture of isomers, bp 135–145 ꢀC, 0.2 Torr,
Supplementary data
91.8 g, 0.3 mol, 48% yield; 1H NMR (CDCl3, 300 MHz)
d
¼0.01–0.03
(m, 18H), 1.30–1.43 (m, 8H), 1.55–1.80 (m, 2H), 2.06–2.07 (m, 2H),
5.50–5.68 (m, 4H); 13C NMR (CDCl3, 75 MHz)
Supplementary data associated with this article can be found in
d¼ꢁ3.3 (q), 23.7 (t),
26.4 (d), 26.8 (t), 40.3 (d), 128.1 (d), 128.4 (d). C18H34Si2, MS: m/z
306 (Mþ 4%), 153 (25), 79 (28), 73 (100), 45 (20).
References and notes
4.1.12. 1-Trimethylsilylcyclopenta-2,4-diene (43)
1. (a) Perkin, W. H., Jr. J. Soc. Chem. Ind. 1912, 31, 616–624; (b) Harries, C. Angew.
Chem. 1920, 33, 226–227; (c) Konrad, E. Angew. Chem. 1936, 49, 799–801; (d)
Campbell, K. N.; Campbell, B. K. Chem. Rev. 1942, 31, 77–175; (e) Saltman, W. M.
Encycl. Polym. Sci. Technol. 1964, 2, 678–754; (f) Morawetz, H. Rubber Chem.
Technol. 2000, 73, 405–426.
2. (a) Ziegler, K. Angew. Chem. 1936, 49, 499–502; (b) Ziegler, K. Chem. Ztg. 1938,
62, 125–127; (c) Ziegler, K.; Jakob, L.; Wollthan, H.; Wenz, A. Liebigs Ann. Chem.
1934, 511, 64–88.
3. Midgley, T.; Henne, A. L. J. Am. Chem. Soc. 1929, 51, 1294–1296.
4. Polymerization of butadiene in the presence of lithium (Firestone Tire & Rubber
Co.) 1959, GB 817695 19590806 Patent; Chem. Abstr. 1960, 54, 59545.
5. Frank, C. E.; Foster, W. E. J. Org. Chem. 1961, 26, 303–307.
6. Weyenberg, D. R.; Toporcer, L. H.; Nelson, L. E. J. Org. Chem. 1968, 33, 1975–1982.
7. The empirical ‘cis rule’ concerning the allyl anion has previously been estab-
lished by some results, see: (a) Bauld, N. L. J. Am. Chem. Soc. 1962, 84, 4347–
4348; (b) Fujita, K.; Ohuma, Y.; Yasuda, H.; Tani, H. J. Organomet. Chem. 1976, 113,
201–213; (c) Cram, D. J. Fundamentals of Carbanion Chemistry; Academic: New
York, NY, 1965; p 193.
From cyclopentadiene, yellow oil, two isomers, bp 28–29 ꢀC,
0.2 Torr, 84.2 g, 0.61 mol, 50% overall yield; 1H NMR (CDCl3,
300 MHz)
d
¼ꢁ0.02 (s, 9H), 0.18 (s, 9H), 3.03–3.39 (m, 3H), 6.50–
6.67 (m, 5H); 13C NMR (CDCl3, 75 MHz)
d
¼ꢁ1.91 (q), ꢁ0.61 (d),
130.2 (d) (2C), 133.4 (d) (2C). 43b (30%):
(d), 133.2 (d), 137.9 (d), 141.5 (s).
d
¼ꢁ1.90 (q), 45.2 (t), 132.4
4.1.13. 1,1-Bis(trimethylsilyl)cyclopenta-2,4-diene (44)
Yellow oil, one isomer, bp 50–52 ꢀC, 0.2 Torr, 54.6 g, 0.26 mol,
43% yield; 1H NMR (CDCl3, 300 MHz)
d
¼ꢁ0.06 (s, 18H), 6.50 (d,
J¼5.7 Hz, 2H), 6.70 (d, J¼5.7 Hz, 2H); 13C NMR (CDCl3, 75 MHz)
d
¼ꢁ0.65 (q), 57.0 (s), 130.6 (d), 136.2 (d). High resolution ESI-MS
calcd for C11H22Si2 [MþH]þ 211.1332; found 211.1328.
8. Lithium is a better reducing agent than sodium (lithium, Eꢀ¼ꢁ3.04 V in water,
and ꢁ2.99 V in liquid ammonia at ꢁ50 ꢀC; sodium, respectively, Eꢀ¼ꢁ2.71 V
and ꢁ2.59 V), see: Wilds, A. L. N.; Nelson, A. J. Am. Chem. Soc. 1953, 75, 5360–
5365; Lithium is more reactive than sodium in the Birch reaction, see: Rabid-
eau, P. W. Tetrahedron 1989, 45, 1579–1603.
9. The 1,4-addition of tert-butyllithium to 1,3-butadiene led to neo-
pentylallyllithium of similar structure to 6. cis–trans isomerization occurs
slowly in THF. By heating at 30 ꢀC and then lowered to ꢁ18 ꢀC, extensive
cis–trans isomerization occurred in favor of the cis-isomer, see: Glaze, W. H.;
Hanicak, J. E.; Chaudhuri, J.; Moore, M. L.; Duncan, D. P. J. Organomet. Chem.
1973, 51, 13–21.
4.1.14. 1,4-Bis(trimethylsilyl)cyclooctene (45)
From 1,3-cyclooctadiene, colourless oil, mixture of isomers, bp
95 ꢀC, 0.2 Torr, 76.2 g, 0.3 mol, 52% yield; 1H NMR (CDCl3, 300 MHz)
d
¼ꢁ0.04 (s, 9H), 1.47–1.86 (m, 5H), 5.35 (d, J¼4.7 Hz, 1H); 13C NMR
(CDCl3, 75 MHz)
d
¼ꢁ3.0 (q), 28.3 (t), 28.4 (t), 29.5 (d), 129.0 (d).
C14H30Si2, MS: m/z 254 (Mþ 50%), 239 (50), 180 (51), 165 (100), 151
(40), 73 (40), 45 (10).
`
10. (a) Fleming, I.; Dunogues, J.; Smithers, R. Org. React. 1989, 37, 57–575; (b) Masse,
4.1.15. Reaction of 8 with succinic anhydride
C. E.; Panek, J. S. Chem. Rev. 1995, 95, 1293–1316; (c) Langkopf, E.; Schinzer, D.
Chem. Rev. 1995, 95, 1375–1408; (d) Fleming, I.; Barbero, A.; Walter, D. Chem.
Rev. 1997, 97, 2063–2192; (e) Chabaud, L.; James, P.; Landais, Y. Eur. J. Org. Chem.
2004, 3173–3199.
A 100-mL three-necked flask equipped with a thermometer,
septum cap, magnetic stirring bar and an argon outlet was charged
with anhydrous CH2Cl2 (15 mL) and anhydrous nitromethane
(1 mL, 19.5 mmol). The solution was cooled to ꢁ60 ꢀC; TiCl4 (0.93 g,
0.5 mL, 4.9 mmol) was added, followed by the slow addition of
succinic anhydride (0.5 g, 4.9 mmol). After 1 h, the mixture was
cooled to ꢁ90 ꢀC and 8 (3 g, 9.7 mmol) in CH2Cl2 (5 mL) was added.
The mixture was stirred for 2 h at ꢁ90 ꢀC and then slowly warmed
to ꢁ60 ꢀC and stirred for 24 h. The reaction was quenched by the
addition of a saturated aqueous solution of NH4Cl (50 mL), and the
aqueous phase was extracted with CH2Cl2 (3ꢃ20 mL). The organic
phase was washed with a saturated aqueous solution of HNaCO3,
brine and water. The solution was dried with MgSO4, filtered and
concentrated in vacuo, and the residue was purified by flash
chromatography (petroleum ether–diethyl ether 70:30) on silica
gel to give 9.
11. (a) Tubul, A.; Santelli, M. Tetrahedron 1988, 44, 3975–3982; (b) Pellissier, H.;
Toupet, L.; Santelli, M. J. Org. Chem. 1994, 59, 1709–1713; (c) Michellys, P.-Y.;
Maurin, P.; Toupet, L.; Pellissier, H.; Santelli, M. J. Org. Chem. 2001, 66, 115–122;
(d) Maurin, P.; Ibrahim-Ouali, M.; Santelli, M. Eur. J. Org. Chem. 2002, 151–156;
(e) Mariet, N.; Pellissier, H.; Ibrahim-Ouali, M.; Santelli, M. Eur. J. Org. Chem.
2004, 2679–2691; (f) Wilmouth, S.; Durand, A.-C.; Goretta, S.; Ravel, C.; Mo-
raleda, D.; Giorgi, M.; Pellissier, H.; Santelli, M. Eur. J. Org. Chem. 2005, 4806–
4814; (g) Pellissier, H.; Michellys, P.-Y.; Santelli, M. Steroids 2007, 72, 297–304.
12. Disilylation of dienes can occur with magnesium metal, see: (a) Dunogue`s, J.;
Arre´guy, B.; Biran, C.; Calas, R.; Pisciotti, F. J. Organomet. Chem. 1973, 63, 119–
131; (b) Rieke, R. D.; Xiong, H. J. Org. Chem. 1991, 56, 3109–3118.
13. Pellissier, H.; Toupet, L.; Santelli, M. J. Org. Chem. 1998, 63, 2148–2153.
14. For ab initio calculations of cis- and trans-butadiene and some of their ions, see:
Hinchliffe, A. J. Mol. Struct. 1971, 10, 379–383.
15. (a) Kos, A. J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1980, 102, 7928–7929; (b) Kos, A.
J.; Stein, P.; Schleyer, P. v. R. J. Organomet. Chem. 1985, 280, C1–C5; (c) Wilhelm,
D.; Clark, T.; Schleyer, P. v. R.; Dietrich, H.; Mahdi, W. J. Organomet. Chem. 1985,
280, C6–C10; (d) Field, L. D.; Gardiner, M. G.; Kennard, C. H. L.; Messerie, B. A.;
Raston, C. L. Organometallics 1991, 10, 3167–3172.
16. Watanabe has shown that lithium naphthalene in THF solution induces the
formation of di-isoprene dianion, which gives 2,6-dimethyl-2,6-octadiene and
2,7-dimethyl-2,6-octadiene, in 80% yield while sodium naphthalene in THF–
benzene leads to a mixture of 2,3,6-trimethyl-1,5-heptadiene (79%) and 2,7-
dimethyl-2,6-octadiene (20%) in 50% yield. See: (a) Suga, K.; Watanabe, S.;
4.1.16. 1-Oxa-6,13-divinylspiro [4.8]tridec-9-en-2-one (9)
Colourless oil, mixture of isomers, 0.4 g, 1.6 mmol, 33% yield; 1H
NMR (CDCl3, 300 MHz)
d¼1.15–1.25 (m, 1H), 1.39–1.53 (m, 3H),
1.67–1.77 (m, 3H), 1.78–1.80 (m, 1H), 1.90–2.01 (m, 2H), 2.13–2.22