8450
L. A. Liotta et al. / Tetrahedron Letters 45 (2004) 8447–8450
J. Bacteriol. 1999, 181, 5543–5550; (c) McGlynn, P.;
Lloyd, R. G. Nat. Rev. Mol. Cell Biol. 2002, 3, 859–
870.
antibiotics. Additional assays are currently being run,
and will be published in due course.
6. Nash, H. A. Site-specific Recombination: Integration
Excision Resolution and Inversion of Defined DNA Seg-
ments in Escherichia coli and Salmonella; ASM: Washing-
ton, DC, 1996.
Acknowledgements
7. Ghosh, K.; VanDuyne, G. 2002, unpublished results.
8. Cassell, G.; Klemm, M.; Pinilla, C.; Segall, A. M. J. Mol.
Biol. 2000, 299, 1193–1202.
9. Klemm, M.; Cheng, C.; Cassell, G.; Shuman, S.; Segall,
A. M. J. Mol. Biol. 2000, 299, 1203–1216.
We thank Pfizer, La Jolla, for equipment and financial
donations as well as their fellowships to I.M. (2003–
2005), R.C. (2003–2005), C.L.C. (SURF, Summer
2004), and L.A.L. (2004–2005). We thank the SDSU
McNair program for fellowships and support to
C.L.C. (Summer 2003 and 2004) and I.M. (Summer
2004). We thank the Howell Foundation for support
for C.L.C. (Spring 2004) and K.C. (Spring 2004). We
thank Merck Research Laboratories for support of
J.V.C.J. (Summer 2004). We thank the MIRT program
for their travel support of I.M. (2003–2004) and R.C.
(2004). We thank ARCS foundation for a fellowship
to J.L.R. (2003–2004). We thank San Diego State Uni-
versity and Boehringer-Ingelheim Pharmaceuticals for
financial support. We thank Professor Rodney Guy
(UCSF), and Dr. Greg Roth (Abbott) for helpful discus-
sions of this work. S.R.M. was supported by NIH
(AI058241-01) and F.A.C. by BBSRC (G15625).
10. Gopaul, D. N.; Guo, F.; VanDuyne, G. D. EMBO. J.
1998, 17, 4175–4187.
11. (a) Tyndall, J. D. A.; Fairlie, D. P. Curr. Med. Chem.
2001, 8, 893; (b) Fairlie, D. P.; Tyndall, J. D. A.; Reid, R.
C.; Wong, A. K.; Abbenante, G.; Scanlon, M. J.; March,
D. R.; Bergmann, D. A.; Chai, C. L. L.; Burkett, B. A. J.
Med. Chem. 2000, 43, 1271.
12. Bolla, M. L.; Azevedo, E. V.; Smith, J. M.; Taylor, R. E.;
Ranjit, D. K.; Segall, A. M.; McAlpine, S. R. Org. Lett.
2003, 5, 109–112.
13. All dipeptide and tripeptide structures were confirmed
using 1H NMR. All linear hexameric peptides were
confirmed using LC–MS and 1H NMR and cyclized
1
peptides were all confirmed using LC–MS, H NMR and
High Resolution Mass Spectrometry.
14. (a) Robinson, J. L.; Taylor, R. E.; Liotta, L. A.; Bolla, M.
L.; Azevedo, E. V.; Medina, I.; McAlpine, S. R. Tetrahe-
dron Lett. 2004, 45, 2147–2150; (b) Ring closing reactions
are slow and typically low yielding. Unpublished results
from the Guy lab at UCSF, and recently our lab, have
found that the use of several coupling reagents facilitates
ring-closing reactions by providing a choice of reagents for
the specific substrate. This is performed in lieu of
optimizing each individual reaction for each individual
coupling agent.
15. Macrocycles containing 2-Cl-Z protected lysine residues
(3c, 4b) are subjected to palladium catalyzed hydrogena-
tion for the final amine deprotection.
16. One representative example of a macrocyclic hexapeptide
and macrocyclic octapeptide in Figure 4 are as follows
(note: MS data is given as major peaks with +23[Na+], and
+1 being those peaks):
References and notes
1. Hirschmann, R.; Smith, A. B.; Sprengeler, P. A. New
Perspectives in Drug Design; Academic: New York, 1995.
2. (a) Vongvanich, N.; Kittakoop, P.; Isaka, M.; Trakulna-
leamsai, S.; Vitmuttipong, S.; Tanticharoen, M.; Thebtar-
anonth, Y. J. Nat. Prod. 2002, 65, 1346–1348; (b) Yano,
T.; Inukai, M.; Takatsu, T.; Tanaka, I. U.S. Patent
2,002,160,946, WO 2000-JP5937, 2002; (c) Aron, J. L.;
Parthun, M. R.; Marcucci, G.; Kitada, S.; Mone, A. P.;
Davis, M. E.; Shen, T.; Murphy, T.; Wickham, J.;
Kanakry, C.; Lucas, D. M.; Reed, J. C.; Grever, M. R.;
Byrd, J. C. Blood 2003, 102, 652–658; For general review
on peptides known to be biologically active see this
reference: (d) Izumiya, N.; Kato, T.; Aoyagi, H.; Waki,
M.; Kondo, M. Synthetic Aspects of Biologically Important
Active Cyclic Peptides; Halsted: New York, NY, 1979.
3. Bursavich, M. G.; West, C. W.; Rich, D. H. Org. Lett.
2001, 3, 2317–2320.
Macrocyclic Hexapeptides
1a-2b-3a (MW=992.5) MS: 1015.5, 993.4,
|_______| Yield: 15%
Macrocyclic Octapeptides
4. (a) Neu, H. C. Science 1992, 257, 1064; (b) Kaufman, M.
Worries Rise Over Effect of Antibiotics in Animal Feed,
Washington Post 2000, March 17th, p A1; (c) Shortridge,
V. D.; Doern, G. V.; Brueggemann, A. B.; Beyer, J. M.;
Flamm, R. K. Clin. Infect. Dis. 1999, 29, 1186–1188.
5. (a) Blakely, G.; May, G.; McCulloch, R.; Arciszewska, L.
K.; Burke, M.; Lovett, S. T.; Sherratt, D. J. Cell 1993, 75,
351–361; (b) Sharples, G. J.; Ingleston, S. M.; Lloyd, R. G.
1a-2c-3a-4a (MW=1264) MS:1265.4
Yield: 10%.
|__________|
17. Sharples, G. J.; Curtis, F. A.; McGlynn, P.; Bolt, E. L. J.
Mol. Biol. 2004, 340, 739–751, Compounds 1–6 are:
Compound 1 = 1a–2c–3a–4a, Compound 2 = 1a–2b–3a,
Compound 3 = 1a–2a–3a, Compound 4 = 1a–2a–3a–4a,
Compound 5 = 1a–2c-3a, Compound 6 = 1a–2d–3a.