Cascade Migration/Cycloisomerization Mechanism
A R T I C L E S
cycles lacking substituents at the C-3 and C-4 positions, as the
hydrogen substituent at C-4 of heterocycle 3 arises from the
prototropic 1,3-H migration and H at C-3 comes from the
cycloisomerization of 2 to 3.
As a partial solution to this problem, we have recently
developed a set of methods for the synthesis of pyrroles and
furans 6 possessing a thio-6m or halogen6f substituent at C-3
of heterocycle. These novel transition metal-catalyzed cascade
transformations involve isomerization of 4 into allene 5,
followed by cycloisomerization of the latter into 6, during which,
a 1,2-shift of the thio- or halogen group occurs (eq 2). Aiming
allene 8, followed by its cycloisomerization to 9. In the latter
case, a prototropic rearrangement of 7 gives rise to allene 10,
which cycloisomerizes with concomitant 1,2-migration into
furan 11.
Herein, we describe a more detailed study of the scope and
mechanisms of different modes of cycloisomerization8 of
alkynyl ketones and cyclic imines proceeding with concurrent
migration of acyloxy and phosphatyloxy groups to produce
multisubstituted furans and fused pyrroles, together with the
synthetic application of the obtained heterocyclic phosphates
in Kumada cross-coupling reactions.
at expanding the scope of the migrating group (MG), we
explored the possibility of engaging a 1,3-migration of different
oxygen-based migrating groups, known to occur in propargyl/
allenyl systems via a [3,3]-sigmatropic shift.7 It was found,
however, that depending on the substitution pattern in 7 and/or
reaction conditions, different regioisomeric products 9 or 11
were formed (eq 3).6a It was reasoned that, in the former case,
the expected [3,3]-shift of the migrating group occurs to produce
Results and Discussion
Synthesis of Trisubstituted Heterocycles via [3,3]-Phos-
phatyloxy Migration in Conjugated Alkynyl Ketones and
Imines. Our initial attempts explored the possibility of engaging
a [3,3]-phosphatyloxy migration in alkynyl ketones 12 into 13
as an approach toward furans 14 (Scheme 1). To this end,
cycloisomerization of several phosphatyloxy alkynyl ketones9
was examined in the presence of CuCl (5 mol %) in DMA.
Since this transformation no longer involves a base-assisted
prototropic H shift, we tested this reaction in the absence of
amine. We were pleased to find that under these conditions the
cycloisomerization proceeded smoothly, furnishing the corre-
sponding furans 14a and 14b in good yield. Although CuCl
appeared to be a poor catalyst for the cycloisomerization of
phenyl-substituted 12c, we found that the employment of AgBF4
in dichloroethane at 80 °C gave the desired furan 14c in good
yield (Scheme 1).
(5) For recent examples, see: (a) Galliford, C. V.; Scheidt, K. A. J. Org. Chem.
2007, 72, 1811. (b) St. Cyr, D. J.; Martin, N.; Arndtsen, B. A. Org. Lett.
2007, 9, 449. (c) Zhang, J.; Schmalz, H.-G. Angew. Chem., Int. Ed. 2006,
45, 6704. (d) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc.
2005, 127, 11260. (e) Kamijo, S.; Kanazawa, C.; Yamamoto, Y. J. Am.
Chem. Soc. 2005, 127, 9260. (f) Yao, T.; Zhang, X.; Larock, R. C. J. Org.
Chem. 2005, 70, 7679. (g) Larionov, O. V.; de Meijere, A. Angew. Chem.,
Int. Ed. 2005, 44, 5664. (h) Duan, X.-h.; Liu, X.-y.; Guo, L.-n.; Liao, M.-
c.; Liu, W.-M.; Liang, Y.-m. J. Org. Chem. 2005, 70, 6980. (i) Lee, K. Y.;
Lee, M. J.; Kim, J. N. Tetrahedron 2005, 61, 8705. (j) Jung, C.-K.; Wang,
J.-C.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 4118. (k) Dhawan, R.;
Arndtsen, B. A. J. Am. Chem. Soc. 2004, 126, 468. (l) Nishibayashi, Y.;
Yoshikawa, M.; Inada, Y.; Milton, M. D.; Hidai, M.; Uemura, S. Angew.
Chem., Int. Ed. 2003, 42, 2681. (m) Braun, R. U.; Zeitler, K.; Mu¨ller, T.
J. J. Org. Lett. 2001, 3, 3297. (n) Brown, C. D.; Chong, J. M.; Shen, L.
Tetrahedron 1999, 55, 14233. (o) Shiraishi, H.; Nishitani, T.; Sakaguchi,
S.; Ishii, Y. J. Org. Chem. 1998, 63, 6234.
(6) For recent examples, see: (a) Sniady, A.; Durham, A.; Morreale, M. S.;
Wheeler, K. A.; Dembinski, R. Org. Lett. 2007, 9, 1175. (b) Smith, C. R.;
Bunnelle, E. M.; Rhodes, A. J.; Sarpong, R. Org. Lett. 2007, 9, 1169. (c)
D´ıaz-AÄ lvarez, A. E.; Crochet, P.; Zablocka, M.; Duhayon, C.; Cadierno,
V.; Gimeno, J.; Majoral, J. P. AdV. Synth. Catal. 2006, 348, 1671. (d) Zhou,
C.-Y.; Chan, P. W. H.; Che, C.-M. Org. Lett. 2006, 8, 325. (e) Kawai, H.;
Oi, S.; Inoue, Y. Heterocycles 2006, 67, 101. (f) Sromek, A. W.; Rubina,
M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 10500. (g) Suhre, M. H.;
Reif, M.; Kirsch, S. F. Org. Lett. 2005, 7, 3925. (h) Sromek, A. W.; Kel’in,
A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2004, 43, 2280. (i) Hashmi,
A. S. K.; Sinha, P. AdV. Synth. Catal. 2004, 346, 432. (j) Ma, S.; Zhang,
J. J. Am. Chem. Soc. 2003, 125, 12386. (k) Gabriele, B.; Salerno, G.; Fazio,
A. J. Org. Chem. 2003, 68, 7853. (l) Ma, S.; Zhang, J. Angew. Chem., Int.
Ed. 2003, 42, 183. (m) Kim, J. T.; Kel’in, A. V.; Gevorgyan, V. Angew.
Chem., Int. Ed. 2003, 42, 98. (n) Kel’in, A. V.; Gevorgyan, V. J. Org.
Chem. 2002, 67, 95. (o) Aurrecoechea, J. M.; Pe´rez, E.; Solay, M. J. Org.
Chem. 2001, 66, 564. (p) Kel’in, A. V.; Sromek, A. W.; Gevorgyan, V. J.
Am. Chem. Soc. 2001, 123, 2074. (q) Gabriele, B.; Salerno, G.; Fazio, A.;
Bossio, M. R. Tetrahedron Lett. 2001, 42, 1339. (r) Hashmi, A. S. K.;
Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem., Int. Ed. 2000, 39,
2285. (s) Gabriele, B.; Salerno, G.; Lauria, E. J. Org. Chem. 1999, 64,
7687. (t) Hashmi, A. S. K.; Ruppert, T. L.; Kno¨fel, T.; Bats, J. W. J. Org.
Chem. 1997, 62, 7295. (u) Arcadi, A.; Marinelli, F.; Pini, E.; Rossi, E.
Tetrahedron Lett. 1996, 37, 3387. (v) Vieser, R.; Eberbach, W. Tetrahedron
Lett. 1995, 35, 4405. (w) Seiller, B.; Bruneau, C.; Dixneuf, P. H.
Tetrahedron 1995, 51, 13089. (x) Fukuda, Y.; Shiragami, H.; Utimoto,
K.; Nozaki, H. J. Org. Chem. 1991, 56, 5816. (y) Marshall, J. A.; Robinson,
E. D. J. Org. Chem. 1990, 55, 3450.
Scheme 1. Cascade [3,3]-Migration/Cycloisomerization of
Phosphatyloxy Alkynyl Ketones into Furans
a Run with 5 mol % AgBF4 in dichloroethane at 80 °C.
Next, we investigated the applicability of this approach for
the synthesis of phosphatyloxy-substituted indolizines 17 (Scheme
2). It was found that the cycloisomerization of alkynyl pyridines
15 under the same conditions proceeded uneventfully to furnish
the desired indolizines 17a-e in good to excellent yields. Of
(7) (a) Zhao, J.; Hughes, C. O.; Toste, F. D. J. Am. Chem. Soc. 2006, 128,
7436. (b) Zhang, L.; Wang, S. J. Am. Chem. Soc. 2006, 128, 1442. (c)
Wang, S.; Zhang, L. Org. Lett. 2006, 8, 4585. (d) Wang, S.; Zhang, L. J.
Am. Chem. Soc. 2006, 128, 8414. (e) Buzas, A.; Gagosz, F. J. Am. Chem.
Soc. 2006, 128, 12614. (f) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804.
(g) Schlossarczyk, H.; Sieber, W.; Hesse, M.; Hansen, H.-J.; Schmid, H.
HelV. Chim. Acta 1973, 56, 875.
(8) Preliminary results of this work (Schemes 4, 8, and 9, Table 1, and portions
of Table 3) have been previously communicated (see ref 6h). All other
results described herein (Schemes 5-7, 10-16, Tables 2, 4, 5, and part of
Table 3) are new.
(9) See the Supporting Information for synthesis of starting materials.
9
J. AM. CHEM. SOC. VOL. 129, NO. 32, 2007 9869