Angewandte
Chemie
Keywords: cyclization · metathesis · oxidation · radical reactions ·
.
sulfinamides
[1] N.Gulavita, A.Hori, Y.Shimizu, P.Laszlo, J.Clardy,
Tetrahe-
dron Lett. 1988, 29, 4381 – 4384.
[2] Total and formal syntheses: a) S.Takano, K.Inomata, T.Sato, K.
Ogasawara, J. Chem. Soc. Chem. Commun. 1989, 1591 – 1592;
b) S.Takano, K.Inomata, T.Sato, M.Takahashi, K.Ogasawara,
J. Chem. Soc. Chem. Commun. 1990, 290 – 292; c) T.Honda, A.
Yamamoto, Y.Cui, M.Tsubuki, J. Chem. Soc. Perkin Trans. 1
1992, 531 – 532; d) AI..Meyers, W.Schmidt, B.Santiago,
Heterocycles 1995, 40, 525 – 529; e) A.N.Hulme, S.S.Henry,
A.I.Meyers, J. Org. Chem. 1995, 60, 1265 – 1270; f) A.Fadel, P.
Arzel, Tetrahedron: Asymmetry 1995, 6, 893 – 900; g) K.O.
Hallinan, T.Honda, Tetrahedron 1995, 51, 12211 – 12216;
h) M.Node, H.Imazato, R.Kurosaki, Y.Kawano, T.Inoue, K.
Nishide, K.Fuji, Heterocycles 1996, 42, 811 – 819; i) S.Shiotani,
H.Okada, K.Nakamata, T.Yamamoto, F.Sekino, Heterocycles
1996, 43, 1031 – 1047; j) A.Fadel, P.Arzel, Tetrahedron: Asym-
metry 1997, 8, 283 – 291; k) M.Shimizu, T.Kamikubo, K.
Ogasawara, Heterocycles 1997, 46, 21 – 26; l) A.Fadel, P.Arzel,
Tetrahedron: Asymmetry 1997, 8, 371 – 374; m) K.Tanaka, T.
Taniguchi, K.Ogasawara, Tetrahedron Lett. 2001, 42, 1049 –
1052; n) O.Tamura, T.Yanagimachi, T.Kobayashi, H.Ishibashi,
Org. Lett. 2001, 3, 2427 – 2429; o) J.R.Fuchs, R.L.Funk, Org.
Lett. 2001, 3, 3923 – 3925; p) AS. .ElAzab, T.Taniguchi, K.
Ogasawara, Heterocycles 2002, 56, 39 – 43; q) S.K. Taylor, M.
Ivanovic, L.J. Simons, M.M. Davis, Tetrahedron: Asymmetry
2003, 14, 743 – 747; r) O.Tamura, T.Yanagimachi, H.Ishibashi,
Tetrahedron: Asymmetry 2003, 14, 3033 – 3041; s) Y.Kita, J.
Futamura, Y.Ohba, Y.Sawama, J.K.Ganesh, H.Fujioka, J. Org.
Chem. 2003, 68, 5917 – 5924; t) H.Zhai, S.Luo, C.Ye, Y.Ma, J.
Org. Chem. 2003, 68, 8268 – 8271; u) H.Hu, H.Zhai, Synlett
Scheme 5. Photomediated dithiocarbamate–TEMPO exchange and
phenol annulation.
for phenol formation using modified Robinson annulation
conditions met with failure.[26] However, use of an alternative
procedure developed by Boger and Mullican proved more
successful.[27] Hence, reaction of 16 with dimethoxymethylene
malonate under basic conditions followed by acid-catalyzed
dehydration gave the electron-deficient pyrone 17 in 73%
overall yield.Inverse-electron-demand Diels–Alder reaction
with dimethoxyethylene ketal followed by in situ loss of CO2
and MeOH gave the tetrasubstituted aromatic compound 18.
Removal of the ester group was accomplished by first
hydrolysis to the corresponding carboxylic acid, followed by
copper-mediated decarboxylation.[27] The resulting lactam 19
had an optical rotation consistent with that reported in the
literature,[2v] and its preparation constitutes a formal total
synthesis of (À)-aphanorphine (1).Conversion of 19 to the
natural product has previously been accomplished in two
steps—reduction of the amide to the amine using LiAlH4 in
87–93% yield,[2o,v,w] followed by O-demethylation using BBr3
in yields ranging from 61–88%.[2a,b,i,k,o,x]
In conclusion, a formal total synthesis of (À)-aphanor-
phine has been achieved using a carbamoyl radical cyclization
to prepare the 6-azabicyclo[3.2.1]octane ring system of the
natural product, followed by a novel photomediated dithio-
carbamate–TEMPO exchange reaction to introduce oxygen
functionality and facilitate formation of the aromatic ring.
Lactam 19, a known intermediate in aphanorphine synthesis,
was prepared in 13 steps and 14% overall yield starting from
commercially available materials.In the course of this work a
new method for the synthesis of carbamoyl dithiocarbamates
has also been developed.
2003, 2129 – 2130; v) J.F.Bower, P.Szeto, T.Gallagher,
Chem.
Commun. 2005, 5793 – 5795; w) M.Katoh, H.Inoue, A.Suzuki,
T.Honda, Synlett 2005, 2820 – 2822; x) M.Li, P.Zhou, H.F.
Roth, Synthesis 2007, 55 – 60; y) Z.Ma, H.Zhai, Synlett 2007,
161 – 163; z) J.F.Bower, P.Szeto, T.Gallagher,
Org. Biomol.
Chem. 2007, 5, 143 – 150.
[3] R.S. Grainger, P. Innocenti, Angew. Chem. 2004, 116, 3527 –
3530; Angew. Chem. Int. Ed. 2004, 43, 3445 – 3448.
[4] This principle has been extensively developed by Zard for the
generation and reaction of a number of radicals using xanthate
precursors.For a recent review see: B.Quiclet-Sire, S.Z.Zard,
Chem. Eur. J. 2006, 12, 6002 – 6016.
[5] J.Quirante, X.Vila, C.Escolano, J.Bonjoch, J. Org. Chem. 2002,
67, 2323 – 2328.
[6] For competitive formation of [3.2.1] vs. [2.2.2] bicyclic ring
systems through radical cyclization see: a) W.F.Berkowitz, P.J.
Wilson, J. Org. Chem. 1991, 56, 3097 – 3102; b) A.Srikrishna, P.
Hemamalini, Tetrahedron 1992, 48, 9337 – 9354; c) M.Toyota,
M.Yokota, M.Ihara, Tetrahedron Lett. 1999, 40, 1551 – 1554;
d) M.Toyota, M.Yokota, M.Ihara, J. Am. Chem. Soc. 2001, 123,
1856 – 1861; e) E.W. Della, P.A. Smith, J. Chem. Soc. Perkin
Trans. 1 2001, 445 – 451.
[7] D.A.Cogan, G.Liu, J.Ellman,
8904.
Tetrahedron 1999, 55, 8883 –
[8] For a recent review on the use of sulfinimines in asymmetric
synthesis see: D.Morton, R.A.Stockman, Tetrahedron2006, 62,
8869 – 8905.
[9] G. Liu, D.A. Cogan, T.D. Owens, T.P. Tang, J.A. Ellman,
J.
Org. Chem. 1999, 64, 1278 – 1284.
[10] (R)-tert-Butanesulfinamide (5) is commercially available but can
be readily prepared on large scale: D.J.Weix, J.A.Ellman, Org.
Synth. 2005, 82, 157 – 165.
Received: March 9, 2007
Published online: June 6, 2007
Angew. Chem. Int. Ed. 2007, 46, 5377 –5380
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5379