C O M M U N I C A T I O N S
Table 2. Direct Catalytic Asymmetric Mannich-Type Reaction of
Aryl, Heteroaryl, Alkenyl, and Alkyl Imines with Trichloromethyl
Ketonesa
Acknowledgment. This work was supported by Grand-in-Aid
for Specially Promoted Research, Grant-in-Aid for Encouragements
for Young Scientists (B), and the Sumitomo Foundation. H.M.
thanks JSPS predoctoral fellowship. We thank Prof. J. C. Carretero
and Dr. R. Go´mez Arraya´s for their helpful advice on imines
synthesis.
Supporting Information Available: Experimental procedures and
characterization data, determination of relative and absolute configu-
ration of products. This material is available free of charge via the
La/pybox
mol %)
time yieldb
drc
ee (%)
(syn)
entry
imine:
R
(
×
1
(h)
(%)
(syn/anti)
1
Ph
2b
2b
2b
2c
2d
2e
2f
10
10
10
10
10
10
10
10
10
10
10
10
5
1a
9
96
21:1
18:1
17:1
20:1
25:1
22:1
8:1
96
95
94
96
96
95
96
95
96
96
98
97
95
92
96
83
87
References
2d Ph
1a 24
1a 36
1a 20
1a 20 >99
1a 21
1a
1a 19
1a 19
1a 22
1a 25
1a 23
1a 14
1a 29
1a 16
1b 32
1b 29
96
90
97
3e Ph
(1) Reviews: (a) Co´rdova, A. Acc. Chem. Res. 2004, 37, 102. (b) Marques,
M. M. B. Angew. Chem., Int. Ed. 2006, 45, 348. (c) Shibasaki, M.;
Matsunaga, S. J. Organomet. Chem. 2006, 691, 2089.
4
5
6
7
8
9
p-Cl-C6H4-
p-Me-C6H4-
p-MeO-C6H4-
2-furyl
2-thienyl
(E)-PhCHdCH- 2h
(2) Selected recent direct Mannich-type reactions of ketones and aldehydes:
(a) Trost, B. M.; Jaratjaroonphong, J.; Reutrakul, V. J. Am. Chem. Soc.
2006, 128, 2778. (b) Matsunaga, S.; Yoshida, T.; Morimoto, H.; Kumagai,
N.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 8777. (c) Ramasastry, S.
S. V.; Zhang, H.; Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc. 2007,
129, 288. (d) Yang, J. W.; Stadler, M.; List, B. Angew. Chem., Int. Ed.
2007, 46, 609. (e) Kano, T.; Yamaguchi, Y.; Tokuda, O.; Maruoka, K. J.
Am. Chem. Soc. 2005, 127, 16408. For other examples, see reviews in
ref 1.
(3) Direct aldol reactions using ester equivalent donors: (a) Evans, D. A.;
Downey, C. W.; Hubbs, J. L. J. Am. Chem. Soc. 2003, 125, 8706. (b)
Magdziak, D.; Lalic, G.; Lee, H. M.; Fortner, K. C.; Aloise, A. D.; Shair,
M. D. J. Am. Chem. Soc. 2005, 127, 7284. (c) Suto, Y.; Tsuji, R.; Kanai,
M.; Shibasaki, M. Org. Lett. 2005, 7, 3757. (d) Saito, S.; Kobayashi, S.
J. Am. Chem. Soc. 2006, 128, 8704 and references therein.
96
98
98
75
4
2g
20:1
21:1
10 cyclohexyl
2i
2j
85 >30:1
72 30:1
74 >30:1
96
93
98
87
76
11f iBu
12f iPr
2k
2b
2g
2b
2b
2c
13g Ph
30:1
17:1
18:1
15:1
8:1
14g 2-thienyl
15g Ph
5
2.5
10
10
16 Ph
17 p-Cl-C6H4-
(4) (R-Hydroxyacetyl)pyrrole as a donor: Harada, S.; Handa, S.; Matsunaga,
a Reaction was run using 2.0 equiv of 1, x mol % of La(OAr)3/iPr-pybox
(x ) 2.5-10), and 0.5x mol % of LiOAr in THF/toluene ) 1:1 (1.0 M) at
-40 °C, unless otherwise noted. b Isolated yield after column chromatog-
S.; Shibasaki, M. Angew. Chem., Int. Ed. 2005, 44, 4365.
(5) For selected examples with malonates and ketoesters: (a) Marigo, M.;
Kjærsgaard, A.; Juhl, K.; Gathergood, N.; Jørgensen, K. A. Chem. Eur.
J. 2003, 9, 2359. (b) Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei,
H.; Umebayashi, N.; Sodeoka, M. Angew. Chem., Int. Ed. 2005, 44, 1525.
(c) Sasamoto, N.; Dubs, C.; Hamashima, Y.; Sodeoka, M. J. Am. Chem.
Soc. 2006, 128, 14010. (d) Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E.
J. Am. Chem. Soc. 2005, 127, 11256. (e) Song, J.; Wang, Y.; Deng, L. J.
Am. Chem. Soc. 2006, 128, 6048. With glycine Schiff base: (f) Bernardi,
L.; Gothelf, A. S.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2003,
68, 2583. (g) Ooi, T.; Kameda, M.; Fujii, J.-i.; Maruoka, K. Org. Lett.
2004, 6, 2397. (h) Salter, M. M.; Kobayashi, J.; Shimizu, Y.; Kobayashi,
S. Org. Lett. 2006, 8, 3533. (i) Shibuguchi, T.; Mihara, H.; Kuramochi,
A.; Ohshima, T.; Shibasaki, M. Chem. Asian J. 2007, 2, 794.
1
raphy. c Determined by H NMR analysis. d Reaction run using 1.2 equiv
of 1. e Reaction run using 1.0 equiv of 1. f Reaction was run in the absence
of LiOAr. g Reaction was run in THF/toluene ) 1:1 (2.0 M).
Scheme 1. Transformation of the Mannich Adducta
(6) Morimoto, H.; Wiedemann, S. H.; Yamaguchi, A.; Harada, S.; Chen, Z.;
Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2006, 45, 3146.
(7) Saito, S.; Tsubogo, T.; Kobayashi, S. Chem. Commun. 2007, 1236.
(8) Utility of trichloromethyl ketones and trichloromethyl carbinols as building
blocks: (a) Corey, E. J.; Link, J. O. J. Am. Chem. Soc. 1992, 114, 1906.
(b) Corey, E. J.; Link, J. O. Tetrahedron Lett. 1992, 33, 3431. See also
ref 6 and references therein.
(9) Reviews: (a) Shibasaki, M.; Yoshikawa, N. Chem. ReV. 2002, 102, 2187.
(b) Shibasaki, M.; Matsunaga, S. Chem. Soc. ReV. 2006, 35, 269.
a
Reagents and conditions: (a) NaOMe, MeOH, 0 °C, 20 min, quant;
(10) N-Heteroarenesulfonyl imines showed better enantioselectivity than other
imines such as N-Ts imines and N-diphenylphosphinoyl imines. For
selected recent examples of N-heteroarenesulfonyl imines in asymmetric
synthesis: (a) Gonza´lez, A. S.; Go´mez Arraya´s, R.; Carretero, J. C. Org.
Lett. 2006, 8, 2977 and references therein. (b) Esquivias, J.; Go´mez,
Arraya´s, R.; Carretero, J. C. J. Am. Chem. Soc. 2007, 129, 1480. (c)
Nakamura, S.; Nakashima, H.; Sugimoto, H.; Shibata, N.; Toru, T.
Tetrahedron Lett. 2006, 47, 7599 and references therein.
(11) For utility of rare earth metal (RE) triflate and/or halide-pybox complexes
as chiral Lewis acids, see a review: (a) Desimoni, G.; Faita, G.; Quadrelli,
P. Chem. ReV. 2003, 103, 3119. See also: (b) Evans, D. A.; Fandrick, K.
R.; Song, H.-J. J. Am. Chem. Soc. 2005, 127, 8942 and references therein.
For exceptional examples using RE-Cl3/pybox complex as a bifunctional
catalyst to generate nucleophilic RE-cyanide species, see: (c) Schaus, S.
E.; Jacobsen, E. N. Org. Lett. 2000, 2, 1001. (d) Keith, J. M.; Jacobsen,
E. N. Org. Lett. 2004, 6, 153.
(12) Preliminary kinetic studies on the concentration of trichloromethyl ketone
1 suggested that the enolate formation is the rate-determining step in the
absence of LiOAr. There are two possibilities for the role of LiOAr: (a)
Complexation with La(OAr)3/pybox to form more basic ate complex or
(b) LiOAr deprotonates 1 to form Li-enolate, followed by rapid trans-
metallation to generate La-enolate. Further mechanistic studies to clarify
the role of LiOAr are ongoing.
(13) Preliminary investigation using trichloromethyl ketone 1c with a larger
substituent (R ) CH2Ph in Figure 1) gave Mannich adduct from imine
1b in 94% yield, syn/anti ) 7.4:1, and 78% ee after 20 h. Further
optimization studies using 1b and 1c are ongoing.
(b) i) Boc2O, DMAP, CH3CN, rt, 98%; ii) Mg, MeOH, rt, 95%; (c) EtSH,
BuLi, THF, 0 °C, 30 min, 79%; (d) DIBAL, CH2Cl2, -78 °C to -40 °C,
7.5 h, quant, 7/8 ) >30:1; (e) DIBAL/Ph3P(O) (1:2), THF, -78 °C to
-40 °C, 2 h, 99%, 8/7 ) >30:1.
The utility of the trichloromethyl ketone template was demon-
strated by transformations in Scheme 1, in which 3b was converted
into ester and dithiane in good yield. The 2-thiophenesulfonyl group
was removed after protection with Boc, followed by treatment with
Mg.10 Either syn- or anti-trichloromethyl carbinol, a unique building
block,6,8 was selectively obtained using either DIBAL (syn-7) or
DIBAL/Ph3P(O) ) 1:2 mixture (anti-8).
In summary, we developed a direct catalytic asymmetric
Mannich-type reaction of a trichloromethyl ketone 1a as a propi-
onate equivalent donor. The new La(OAr)3-iPr-pybox + LiOAr
system gave products in >99-72% yield, >30:1-8:1 dr, and 98-
92% ee (from 1a). The La-OAr moiety in the La(OAr)3-iPr-pybox
had a key role in promoting the reaction. La(OAr)3-iPr-pybox had
different reactivity from La(OTf)3-iPr-pybox. Further applications
of the catalyst13 as well as investigation of the reaction mechanism
are ongoing.
JA073285P
9
J. AM. CHEM. SOC. VOL. 129, NO. 31, 2007 9589