1 (a) H. Durr, in Photochromism: Molecules and Systems, ed. H. Durr and
H. Bouas-Laurent, Elsevier Science Publishers B.V., Amsterdam, 1990,
pp. 1–14; (b) M. Irie, Chem. Rev., 2000, 100, 1685; (c) Y. Yokoyama,
Chem. Rev., 2000, 100, 1717; (d) G. Berkovic, V. Krongauz and
V. Weiss, Chem. Rev., 2000, 100, 1741.
2 (a) R. H. Kohler, J. Cao, W. R. Zipfel and W. W. Webb, Science, 1997,
276, 2039; (b) C. L. Caylor, I. Dobrianov, C. Kimmer, R. E. Thorne,
W. Zipfel and W. W. Webb, Phys. Rev. E: Stat. Phys., Plasmas, Fluids,
Relat. Interdiscip. Top., 1999, 59, R3831.
3 (a) S. Kawata, H.-B. Sun, T. Tanaka and K. Takada, Nature, 2001, 412,
697; (b) W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack,
C. K. Ober, J. W. Perry and S. R. Marder, Science, 2002, 296, 1106.
4 (a) J. D. Bhawalkar, N. D. Kumar, C. F. Zhao and P. N. Prasad, J. Clin.
Laser Med. Surg., 1997, 15, 201; (b) E. A. Wachter, W. P. Partridge,
W. G. Fisher, H. C. Dees and M. G. Petersen, Proc. SPIE-Int. Soc. Opt.
Eng., 1998, 3269, 68; (c) K. Ogawa, H. Hasegawa, Y. Inaba, Y. Kobuke,
H. Inouye, Y. Kanemitsu, E. Kohno, T. Hirano, S.-i. Ogura and
I. Okura, J. Med. Chem., 2006, 49, 2276; (d) J. T. Dy, K. Ogawa,
A. Satake and Y. Kobuke, Chem.–Eur. J., 2007, 13, 3491; (e) K. Ogawa,
J. T. Dy and Y. Kobuke, Mol. Cryst. Liq. Cryst. in press.
Fig. 5 Time courses in the photoisomerization of 1trans to 1cis (r: 1 mL
of a rapidly stirred 2.5 mM THF solution in a 1 cm cell) and 3 ($: 0.4 mM
THF solution) using two-photon excitation with 200 fs pulses at 890 nm.
The progress of the isomerization was monitored at 505 nm.
waist of around 40 mm at a NIR wavelength of 890 nm. Fig. 5
shows the progress of the isomerization of 1trans to 1cis by two-
photon irradiation using the above-mentioned conditions. After
irradiating 4.6 6 1010 shots for a period of 10 min, around 2 6
10211 mol (7% conversion) of 1trans had been converted to 1cis.
Using the same experimental conditions, it would take around
0.2 ms to isomerize the 1trans molecules within a spherical volume
of 40 mm diameter. This would enable a writing frequency of
around 5 kHz, which would strongly depend on the peak power
and molecular density.
5 (a) D. A. Parthenopoulos and P. M. Rentzepis, Science, 1989, 245, 843;
(b) S. Kawata and Y. Kawata, Chem. Rev., 2000, 100, 1777.
6 (a) S. Saita, T. Yamaguchi, T. Kawai and M. Irie, ChemPhysChem,
2005, 6, 2300; (b) K. D. Belfield, M. V. Bondar, C. C. Corredor,
F. E. Hernandez, O. V. Przhonskya and S. Yao, ChemPhysChem, 2006,
7, 2514; (c) K. D. Belfield, Y. Liu, R. A. Negres, M. Fan, G. Pan,
D. J. Hagan and F. E. Hernandez, Chem. Mater., 2002, 14, 3663; (d)
S. W. Magennis, F. S. Mackay, A. C. Jones, K. M. Tait and P. J. Sadler,
Chem. Mater., 2005, 17, 2059.
7 (a) K. Kamada, K. Ohta, Y. Iwase and K. Kondo, Chem. Phys. Lett.,
2003, 372, 386; (b) Y. Iwase, K. Kondo, K. Kamada and K. Ohta,
J. Mater. Chem., 2003, 13, 1573.
8 (a) K. Ogawa, A. Ohashi, Y. Kobuke, K. Kamada and K. Ohta, J. Am.
Chem. Soc., 2003, 125, 13356; (b) K. Ogawa, A. Ohashi, Y. Kobuke,
K. Kamada and K. Ohta, J. Phys. Chem. B, 2005, 109, 22003.
9 (a) A. Karotki, M. Drobizhev, Y. Dzenis, P. N. Taylor, H. L. Anderson
and A. Rebane, Phys. Chem. Chem. Phys., 2004, 6, 7; (b) M. Drobizhev,
Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor and
H. L. Anderson, J. Am. Chem. Soc., 2004, 126, 15352; (c) M. Drobizhev,
Y. Stepanenko, A. Rebane, C. J. Wilson, T. E. O. Screen and
H. L. Anderson, J. Am. Chem. Soc., 2006, 128, 12432; (d) I. Hisaki,
S. Hiroto, K. S. Kim, S. B. Noh, D. Kim, H. Shinokubo and A. Osuka,
Angew. Chem., Int. Ed., 2007, 46, 5125.
10 (a) M. Irie, H. Ishida and T. Tsujioka, Jpn. J. Appl. Phys., 1999, 38,
6114; (b) N. J. Cherepy and R. D. Sanner, Opt. Mater., 2006, 28, 1350.
11 (a) T. B. Norsten and N. R. Branda, J. Am. Chem. Soc., 2001, 123,
1784; (b) A. Osuka, D. Fujikane, H. Shinmori, S. Kobatake and M. Irie,
J. Org. Chem., 2001, 66, 3913; (c) P. A. Liddell, G. Kodis, A. L. Moore,
T. A. Moore and D. Gust, J. Am. Chem. Soc., 2002, 124, 7668; (d) P. A.
Liddell, G. Kodis, J. Andre´asson, L. de la Garza, S. Bandyopadhyay,
R. H. Mitchell, T. A. Moore, A. L. Moore and D. Gust, J. Am. Chem.
Soc., 2004, 126, 4803; (e) S. D. Straight, J. Andre´asson, G. Kodis,
S. Bandyopadhyay, R. H. Mitchell, A. L. Moore, T. A. Moore and
D. Gust, J. Am. Chem. Soc., 2005, 127, 9403.
In summary, we have successfully synthesized a porphyrin–
perinaphthothioindigo conjugate exhibiting an efficient two-
photon absorption and demonstrated the switching of a PNT
moiety via both two-photon excitation and one-photon irradiation.
It would be interesting to observe the performance of compound 1
in a solid matrix, e.g. a polymer medium, to confirm its
applicability to 3D optical data storage, and this project is now
being actively pursued.
We thank Dr A. Ishizumi and Mr Y. Okajima for the two-
photon photoisomerization experiments. This work was supported
by Grant-in-Aids for Scientific Research (A) (no. 15205020) and
for Young Scientists (B) (no. 18750118) (KO) from Ministry of
Education, Culture, Sports, Science and Technology, Japan
(Monbu Kagakusho).
Notes and references
{ Even if we consider the experimental errors, the maximum value that can
be obtained at the other wavelength of 900 nm is 1600 ¡ 560 GM (2160 y
1040 GM), which is still larger than the 1030 GM reported for
indolylfulgide.
12 K. Ogawa, J. Dy and Y. Kobuke, J. Porphyrins Phthalocyanines, 2005,
9, 735.
13 J. Leavitt, Chem. Abs., 1971, 74, 113196.
5172 | Chem. Commun., 2007, 5170–5172
This journal is ß The Royal Society of Chemistry 2007