Journal of the American Chemical Society
Communication
Mandal, S.; Ghosh, S. K.; Sar, P.; Ghosh, A.; Saha, R.; Saha, B. RSC Adv.
2016, 6, 69605.
Rev. 2012, 41, 1696. (c) Cooperative Catalysis; Peters, R., Ed.; Wiley-
VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015.
(13) Selected reviews on anion-binding catalysis: (a) Lacour, J.;
Moraleda, D. Chem. Commun. 2009, 7073. (b) Zhang, Z.; Schreiner, P.
R. Chem. Soc. Rev. 2009, 38, 1187. (c) Beckendorf, S.; Asmus, S.;
(3) Williamson, A. Justus Liebigs Ann. Chem. 1851, 77, 37.
(4) (a) Verzele, M.; Acke, M.; Anteunis, M. J. Chem. Soc. 1963, 5598.
(b) Fleming, B. I.; Bolker, H. I. Can. J. Chem. 1976, 54, 685. (c) Gooßen,
L. J.; Linder, C. Synlett 2006, 2006, 3489. (d) Iwanami, K.; Yano, K.;
Oriyama, T. Chem. Lett. 2007, 36, 38. (e) Kalutharage, N.; Yi, C. S. Org.
Lett. 2015, 17, 1778.
(5) (a) Nicolaou, K. C.; Hwang, C. K.; Nugiel, D. A. J. Am. Chem. Soc.
1989, 111, 4136. (b) Lee, S. H.; Park, Y. J.; Yoon, C. M. Tetrahedron Lett.
1999, 40, 6049. (c) Wada, M.; Nagayama, S.; Mizutani, K.; Hiroi, R.;
Miyoshi, N. Chem. Lett. 2002, 31, 248. (d) Izumi, M.; Fukase, K. Chem.
Mancheno, O. G. ChemCatChem 2012, 4, 926. (d) Avila, E. P.;
̃
Amarante, G. W. ChemCatChem 2012, 4, 1713. (e) Phipps, R. J.;
Hamilton, G. L.; Toste, F. D. Nat. Chem. 2012, 4, 603. (f) Woods, P. A.;
Smith, A. D. Supramolecular Chemistry: From Molecules to Nanomaterials
2012, 4, 1383. (g) Mahlau, M.; List, B. Angew. Chem., Int. Ed. 2013, 52,
518. (h) Brak, K.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2013, 52, 534.
(i) Seidel, D. Synlett 2014, 25, 783. (j) Busschaert, N.; Caltagirone, C.;
Van Rossom, W.; Gale, P. A. Chem. Rev. 2015, 115, 8038. (k) Nagorny,
P.; Sun, Z. Beilstein J. Org. Chem. 2016, 12, 2834.
Lett. 2005, 34, 594. (e) Gharpure, S. J.; Prasad, J. V. K. J. Org. Chem.
́
2011, 76, 10325. (f) Bakos, M.; Gyomore, A.; Domjan
Angew. Chem., Int. Ed. 2017, 56, 5217.
́
, A.; Soos
́
, T.
̈
̈
(14) Examples of catalytic reactions likely to involve chloride
recognition: (a) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004,
126, 10558. (b) Taylor, M. S.; Tokunaga, N.; Jacobsen, E. N. Angew.
Chem., Int. Ed. 2005, 44, 6700. (c) Raheem, I. T.; Thiara, P. S.; Peterson,
E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404. (d) Yamaoka,
Y.; Miyabe, H.; Takemoto, Y. J. Am. Chem. Soc. 2007, 129, 6686.
(6) (a) Doyle, M. P.; DeBruyn, D. J.; Kooistra, D. A. J. Am. Chem. Soc.
1972, 94, 3659. (b) Rahier, N. J.; Cheng, K.; Gao, R.; Eisenhauer, B. M.;
Hecht, S. M. Org. Lett. 2005, 7, 835. (c) Gellert, B. A.; Kahlcke, N.;
Feurer, M.; Roth, S. Chem. - Eur. J. 2011, 17, 12203.
(7) (a) Kato, J.-i.; Iwasawa, N.; Mukaiyama, T. Chem. Lett. 1985, 14,
743. (b) Sassaman, M. B.; Kotian, K. D.; Prakash, G. K. S.; Olah, G. A. J.
Org. Chem. 1987, 52, 4314. (c) Hartz, N.; Surya Prakash, G. K.; Olah, G.
A. Synlett 1992, 1992, 569. (d) Hatakeyama, S.; Mori, H.; Kitano, K.;
Yamada, H.; Nishizawa, M. Tetrahedron Lett. 1994, 35, 4367. (e) Yang,
W.-C.; Lu, X.-A.; Kulkarni, S. S.; Hung, S.-C. Tetrahedron Lett. 2003, 44,
7837. (f) Iwanami, K.; Seo, H.; Tobita, Y.; Oriyama, T. Synthesis 2005,
2005, 183. (g) Savela, R.; Leino, R. Synthesis 2015, 47, 1749.
(8) Examples of reductions involving preformed acetals/ketals:
(a) Kotsuki, H.; Ushio, Y.; Yoshimura, N.; Ochi, M. J. Org. Chem.
1987, 52, 2594. (b) Howard, W. L.; Brown, J. H. J. Org. Chem. 1961, 26,
1026. (c) Mori, A.; Fujiwara, J.; Maruoka, K.; Yamamoto, H. Tetrahedron
Lett. 1983, 24, 4581. (d) Nakao, R.; Fukumoto, T.; Tsurugi, J. J. Org.
Chem. 1972, 37, 4349.
́
(e) Martínez-García, H.; Morales, D.; Perez, J.; Coady, D. J.; Bielawski,
C. W.; Gross, D. E.; Cuesta, L.; Marquez, M.; Sessler, J. L.
Organometallics 2007, 26, 6511. (f) Reisman, S. E.; Doyle, A. G.;
Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 7198. (g) Peterson, E. A.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2009, 48, 6328. (h) Schafer, A. G.;
Wieting, J. M.; Fisher, T. J.; Mattson, A. E. Angew. Chem., Int. Ed. 2013,
52, 11321. (i) Zhao, Q.; Wen, J.; Tan, R.; Huang, K.; Metola, P.; Wang,
R.; Anslyn, E. V.; Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 8467.
(j) Zhang, H.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc. 2014, 136,
16485. (k) Zurro, M.; Asmus, S.; Beckendorf, S.; Muck-Lichtenfeld, C.;
̈
García Mancheno, O. J. Am. Chem. Soc. 2014, 136, 13999. (l) García
̃
Mancheno, O.; Asmus, S.; Zurro, M.; Fischer, T. Angew. Chem., Int. Ed.
̃
2015, 54, 8823. (m) Shirakawa, S.; Liu, S.; Kaneko, S.; Kumatabara, Y.;
Fukuda, A.; Omagari, Y.; Maruoka, K. Angew. Chem., Int. Ed. 2015, 54,
15767. (n) Jungbauer, S. H.; Huber, S. M. J. Am. Chem. Soc. 2015, 137,
12110. (o) Ford, D. D.; Lehnherr, D.; Kennedy, C. R.; Jacobsen, E. N.
ACS Catal. 2016, 6, 4616. (p) Ray Choudhury, A.; Mukherjee, S. Chem.
Sci. 2016, 7, 6940. (q) Wen, J.; Tan, R.; Liu, S.; Zhao, Q.; Zhang, X.
Chem. Sci. 2016, 7, 3047. (r) Park, Y.; Schindler, C. S.; Jacobsen, E. N. J.
Am. Chem. Soc. 2016, 138, 14848. (s) Ford, D. D.; Lehnherr, D.;
Kennedy, C. R.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 7860.
(t) Zhao, C.; Chen, S. B.; Seidel, D. J. Am. Chem. Soc. 2016, 138, 9053.
(15) Tripathi, C. B.; Mukherjee, S. J. Org. Chem. 2012, 77, 1592.
(16) (a) Kotke, M.; Schreiner, P. R. Tetrahedron 2006, 62, 434.
(b) Kotke, M.; Schreiner, P. R. Synthesis 2007, 2007, 779.
(9) Examples of indirect reductive etherifications: (a) Barluenga, J.;
́ ́
Tomas-Gamasa, M.; Aznar, F.; Valdes, C. Angew. Chem., Int. Ed. 2010,
49, 4993. (b) Xie, Y.; Floreancig, P. E. Angew. Chem., Int. Ed. 2014, 53,
4926.
(10) Many reductive etherification methods are limited to the synthesis
of symmetrical ethers via homocoupling of an aldehyde or ketone. Early
examples: (a) Kikugawa, Y. Chem. Lett. 1979, 8, 415. (b) Aizpurua, J. M.;
Lecea, B.; Palomo, C. Can. J. Chem. 1986, 64, 2342. (c) Sassaman, M. B.;
Surya Prakash, G. K.; Olah, G. A.; Loker, K. B. Tetrahedron 1988, 44,
3771.
(11) Examples of cooperative catalysis with (thio)ureas and Brønsted
acids: (a) Shi, Y.-L.; Shi, M. Adv. Synth. Catal. 2007, 349, 2129. (b) Weil,
T.; Kotke, M.; Kleiner, C. M.; Schreiner, P. R. Org. Lett. 2008, 10, 1513.
(c) Klausen, R. S.; Jacobsen, E. N. Org. Lett. 2009, 11, 887. (d) Reis, O.;
Eymur, S.; Reis, B.; Demir, A. S. Chem. Commun. 2009, 1088. (e) Xu, H.;
Zuend, S. J.; Woll, M. G.; Tao, Y.; Jacobsen, E. N. Science 2010, 327, 986.
(f) Knowles, R. R.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132,
(17) Selected publications on the Schreiner thiourea catalyst:
(a) Schreiner, P. R.; Wittkopp, A. Org. Lett. 2002, 4, 217. (b) Wittkopp,
A.; Schreiner, P. R. Chem. - Eur. J. 2003, 9, 407. (c) Kleiner, C. M.;
Schreiner, P. R. Chem. Commun. 2006, 4315. (d) Lippert, K. M.; Hof, K.;
Gerbig, D.; Ley, D.; Hausmann, H.; Guenther, S.; Schreiner, P. R. Eur. J.
Org. Chem. 2012, 2012, 5919. (e) Nodling, A. R.; Jakab, G.; Schreiner, P.
̈
́ ́
5030. (g) Marques-Lopez, E.; Alcaine, A.; Tejero, T.; Herrera, R. P. Eur.
R.; Hilt, G. Eur. J. Org. Chem. 2014, 2014, 6394. For a review, see:
(f) Zhang, Z.; Bao, Z.; Xing, H. Org. Biomol. Chem. 2014, 12, 3151.
(18) Pesti, J.; Larson, G. L. Org. Process Res. Dev. 2016, 20, 1164.
(19) Dichloromethane was superior to other solvents such as ether and
toluene. Reactions in which oxocarbenium ion intermediates are
implicated frequently employ dichloromethane as solvent. See, for
instance, refs 5a, c−e, 6b, 7a, b, d, e, 10c.
J. Org. Chem. 2011, 2011, 3700. (h) Zhang, Z.; Lippert, K. M.;
Hausmann, H.; Kotke, M.; Schreiner, P. R. J. Org. Chem. 2011, 76, 9764.
(i) Burns, N. Z.; Witten, M. R.; Jacobsen, E. N. J. Am. Chem. Soc. 2011,
133, 14578. (j) Rubush, D. M.; Morges, M. A.; Rose, B. J.; Thamm, D.
H.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 13554. (k) Geng, Y.; Kumar,
A.; Faidallah, H. M.; Albar, H. A.; Mhkalid, I. A.; Schmidt, R. R. Angew.
Chem., Int. Ed. 2013, 52, 10089. (l) Borovika, A.; Tang, P.-I.; Klapman,
S.; Nagorny, P. Angew. Chem., Int. Ed. 2013, 52, 13424. (m) Min, C.;
Mittal, N.; Sun, D. X.; Seidel, D. Angew. Chem., Int. Ed. 2013, 52, 14084.
(n) Mittal, N.; Sun, D. X.; Seidel, D. Org. Lett. 2014, 16, 1012. (o) Xue,
X.-S.; Yang, C.; Li, X.; Cheng, J.-P. J. Org. Chem. 2014, 79, 1166.
(p) Couch, E. D.; Auvil, T. J.; Mattson, A. E. Chem. - Eur. J. 2014, 20,
8283. (q) Yeung, C. S.; Ziegler, R. E.; Porco, J. A.; Jacobsen, E. N. J. Am.
Chem. Soc. 2014, 136, 13614. (r) Min, C.; Lin, C.-T.; Seidel, D. Angew.
Chem., Int. Ed. 2015, 54, 6608.
(20) With regard to scope, the combination of ketones and secondary
alcohols remains challenging. For instance, under the standard
conditions, a reaction between acetophenone and isopropyl alcohol
remained incomplete after 24 h and provided the desired ether product
in only 42% yield.
(21) Busschaert, N.; Kirby, I. L.; Young, S.; Coles, S. J.; Horton, P. N.;
Light, M. E.; Gale, P. A. Angew. Chem., Int. Ed. 2012, 51, 4426.
(22) Because of solubility issues, the chloride binding study could not
be performed in dichloromethane or chloroform. It should be noted
that, under the reaction conditions, the catalyst becomes fully soluble
upon addition of HCl.
(12) Selected reviews on cooperative catalysis: (a) Piovesana, S.;
Scarpino Schietroma, D. M.; Bella, M. Angew. Chem., Int. Ed. 2011, 50,
6216. (b) Briere, J.-F.; Oudeyer, S.; Dalla, V.; Levacher, V. Chem. Soc.
̀
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX