Journal of Medicinal Chemistry
Page 6 of 7
8. Bhangoo, S. K.; Swanson, G. T. Kainate receptor signaling in pain
pathways. Mol. Pharmacol. 2013, 83, 307-315.
d]pyrimidine-2,4(1H,3H)-dione (6). Starting from 26
(31 mg, 0.067 mmol) and as described for 5a, title
compound was obtained as white solid (10 mg, 0.34 mmol,
1
2
3
4
5
6
7
8
9. Campiani, G.; Morelli, E.; Nacci, V.; Fattorusso, C.; Ramunno, A.;
Novellino, E.; Greenwood, J.; Liljefors, T.; Griffiths, R.; Sinclair, C.;
Reavy, H.; Kristensen, A. S.; Pickering, D. S.; Schousboe, A.; Cagnotto,
A.; Fumagalli, E.; Mennini, T. Characterization of the 1H-
cyclopentapyrimidine-2,4(1H,3H)-dione derivative (S)-CPW399 as a
novel, potent, and subtype-selective AMPA receptor full agonist with
partial desensitization properties. J. Med. Chem. 2001, 44, 4501-4504.
10. Butini, S.; Pickering, D. S.; Morelli, E.; Coccone, S. S.; Trotta, F.; De
Angelis, M.; Guarino, E.; Fiorini, I.; Campiani, G.; Novellino, E.;
Schousboe, A.; Christensen, J. K.; Gemma, S. 1H-cyclopentapyrimidine-
2,4(1H,3H)-dione-related ionotropic glutamate receptors ligands.
structure-activity relationships and identification of potent and
Selective iGluR5 modulators. J. Med. Chem. 2008, 51, 6614-6618.
11. Venskutonyte, R.; Butini, S.; Coccone, S. S.; Gemma, S.; Brindisi, M.;
Kumar, V.; Guarino, E.; Maramai, S.; Valenti, S.; Amir, A.; Valades, E. A.;
Frydenvang, K.; Kastrup, J. S.; Novellino, E.; Campiani, G.; Pickering, D.
S. Selective kainate receptor (GluK1) ligands structurally based upon
1H-cyclopentapyrimidin-2,4(1H,3H)-dione: synthesis, molecular
modeling, and pharmacological and biostructural characterization. J.
Med. Chem. 2011, 54, 4793-4805.
1
42% yield). H NMR (300 MHz, D2O) δ 8.18 (d, J = 3.2 Hz,
1H), 6.77 (d, J = 3.2 Hz, 1H), 4.59 (d, J = 2.3 Hz, 2H), 4.13-
4.07 (m, 1H), 3.83-3.77 (m, 1H), 3.52-342 (m, 1H); 13C NMR
(300 MHz, D2O) δ 171.8, 169.9, 162.3, 160.0, 151.8, 135.1,
131.6, 120.2, 104.5, 52.2, 50.7, 41.8. ESI-MS m/z 352 [M-H]-
. Anal. (C12H11N5O6S) C, H, N.
9
PDB ACCESSION CODES
6F29 (2) and 6F28 (5c). Authors will release the atomic
coordinates and experimental data upon article publication.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information. Experimental procedures, Figures
and Tables for computational and X-ray studies and molecular
formula strings. This material is available free of charge via
12. Morelli, E.; Gemma, S.; Budriesi, R.; Campiani, G.; Novellino, E.;
Fattorusso, C.; Catalanotti, B.; Coccone, S. S.; Ros, S.; Borrelli, G.;
Persico, M.; Fiorini, I.; Nacci, V.; Ioan, P.; Chiarini, A.; Hamon, M.;
Cagnotto, A.; Mennini, T.; Fracasso, C.; Colovic, M.; Caccia, S.; Butini, S.
Specific targeting of peripheral serotonin 5-HT(3) receptors.
AUTHOR INFORMATION
Corresponding Author
*Stefania Butini email: butini3@unisi.it; Giuseppe Campiani
email: campiani@unisi.it
*For pharmacology, email: picker@sund.ku.dk
*For crystallography, email: jsk@sund.ku.dk
Author Contributions
The manuscript was written with contributions of all authors.
All authors approved the final version of the manuscript.
Funding Sources
The Lundbeck Foundation (R.V., J.S.K.), GluTarget (R.V., L.H.,
K.F., J.S.K., D.S.P.), Danscatt (R.V., K.F., J.S.K).
Synthesis,
biological
investigation,
and
structure-activity
relationships. J Med Chem 2009, 52, 3548-3562.
13. Schönbrunn, E.; Lawrence, N. J.; Lawrence, H. R. Potent Dual Brd4-
kinase Inhibitors as Cancer Therapeutics. WO 2016022460 A1, Feb
11, 2016.
14. Chavan, S. P.; Dhawane, A. N.; Kalkote, U. R. Tandem Aza-Michael-
Condensation-Aldol Cyclization Reaction: Approach to the
Construction of DE Synthon of (+/-)-Camptothecin. Synlett. 2008, 18,
2781-2784.
15. Simpson, G. L.; Gordon, A. H.; Lindsay, D. M.; Promsawan, N.;
Crump, M. P.; Mulholland, K.; Hayter, B. R.; Gallagher, T. Glycosylated
foldamers to probe the carbohydrate-carbohydrate interaction. J. Am.
Chem. Soc. 2006, 128, 10638-10639.
16. Hayward, S.; Berendsen, H. J. Systematic analysis of domain
motions in proteins from conformational change: new results on
citrate synthase and T4 lysozyme. Proteins 1998, 30, 144-154.
17. Mollerud, S.; Frydenvang, K.; Pickering, D. S.; Kastrup, J. S. Lessons
from crystal structures of kainate receptors. Neuropharmacology
2017, 112, 16-28.
18. Venskutonyte, R.; Frydenvang, K.; Gajhede, M.; Bunch, L.;
Pickering, D. S.; Kastrup, J. S. Binding site and interlobe interactions of
the ionotropic glutamate receptor GluK3 ligand binding domain
revealed by high resolution crystal structure in complex with (S)-
glutamate. J. Struct. Biol. 2011, 176, 307-314.
19. Veran, J.; Kumar, J.; Pinheiro, P. S.; Athane, A.; Mayer, M. L.; Perrais,
D.; Mulle, C. Zinc potentiates GluK3 glutamate receptor function by
stabilizing the ligand binding domain dimer interface. Neuron 2012,
76, 565-578.
20. Venskutonyte, R.; Frydenvang, K.; Hald, H.; Rabassa, A. C.; Gajhede,
M.; Ahring, P. K.; Kastrup, J. S. Kainate induces various domain
closures in AMPA and kainate receptors. Neurochem. Int. 2012, 61,
536-545.
21. Mayer, M. L. Crystal structures of the GluR5 and GluR6 ligand
binding cores: molecular mechanisms underlying kainate receptor
selectivity. Neuron 2005, 45, 539-552.
ACKNOWLEDGMENT
We thank MAX-lab, Lund, Sweden for providing beamtime and
beamline scientists for their help (R.V., K.F., J.S.K.). We thank
Dr Andrew Orry (Molsoft LLC) for the trial license of ICM-Pro.
ABBREVIATIONS
AMPA,
yl)propanoic
(S)-2-amino-3-(5-methyl-3-hydroxyisoxazol-4-
acid; BBB, blood-brain-barrier; DCM,
dichloromethane; DMF, N,N-dimethylformamide; DMSO,
dimethylsulfoxide; LBD, ligand-binding domain; iGluRs,
ionotropic glutamate receptors; KARs, kainate receptors; L-
Glu, L-glutamate; TFA, trifluoroacetic acid.
REFERENCES
1. Traynelis, S. F.; Wollmuth, L. P.; McBain, C. J.; Menniti, F. S.; Vance, K.
M.; Ogden, K. K.; Hansen, K. B.; Yuan, H.; Myers, S. J.; Dingledine, R.
Glutamate receptor ion channels: structure, regulation, and function.
Pharmacol. Rev. 2010, 62, 405-496.
2. Pinheiro, P. S.; Perrais, D.; Coussen, F.; Barhanin, J.; Bettler, B.;
Mann, J. R.; Malva, J. O.; Heinemann, S. F.; Mulle, C. GluR7 is an
essential subunit of presynaptic kainate autoreceptors at
hippocampal mossy fiber synapses. Proc. Natl. Acad. Sci. U. S. A. 2007,
104, 12181-12186.
3. Sobolevsky, A. I.; Rosconi, M. P.; Gouaux, E. X-ray structure,
symmetry and mechanism of an AMPA-subtype glutamate receptor.
Nature 2009, 462, 745-756.
4. Huettner, J. E. Kainate receptors and synaptic transmission. Prog.
Neurobiol. 2003, 70, 387-407.
22. Vistoli, G.; Mazzolari, A.; Testa, B.; Pedretti, A. Binding space
concept: a new approach to enhance the reliability of docking scores
and its application to predicting butyrylcholinesterase hydrolytic
activity. J. Chem. Inf. Model. 2017, 57, 1691-1702.
23. Maicheen, C.; Phosrithong, N.; Ungwitayatorn, J. Biological activity
evaluation and molecular docking study of chromone derivatives as
cyclooxygenase-2 inhibitors. Med. Chem. Res. 2017, 26, 662-671.
24. Capone, F.; Aloisi, A. M. Refinement of pain evaluation techniques.
The formalin test. Ann. Ist. Super. Sanita 2004, 40, 223-229.
25. Gynther, M.; Petsalo, A.; Hansen, S. H.; Bunch, L.; Pickering, D. S.
Blood-brain barrier permeability and brain uptake mechanism of
kainic acid and dihydrokainic acid. Neurochem Res 2015, 40, 542-549.
5. Jane, D. E.; Lodge, D.; Collingridge, G. L. Kainate receptors:
pharmacology,
function
and
therapeutic
potential.
Neuropharmacology 2009, 56, 90-113.
6. Lerma, J. Kainate receptor physiology. Curr. Opin. Pharmacol. 2006,
6, 89-97.
7. Matute, C. Therapeutic potential of kainate receptors. CNS Neurosci.
Ther. 2011, 17, 661-669.
ACS Paragon Plus Environment