volume reduced in vacuo to ca. 15 cm3. After adding toluene
(30 cm3) the volume of the solution was reduced in vacuo to induce
precipitation of a green solid which was thoroughly washed with
n-hexane (3 × 10 cm3), yield 122 mg (44%).
Many of the details of the structure analyses are listed in Table 9.
CCDC reference numbers 166635, 166636, 644601–644604.
For crystallographic data in CIF or other electronic format see
DOI: 10.1039/b705975b
The complexes cis-19+[PF6]−, trans-19+[PF6]−, cis-20+[PF6]− and
trans-20+[PF6]− were prepared similarly.
Acknowledgements
trans - [ (dppm)(CO)2{(PhO)3P}Mn(l - NC)Mn(PPh3)(NO)(g5 -
We thank the University of Bristol for Postgraduate Scholarships
(K.M.A., E.L.-R.), the Leverhulme Foundation for a Postdoctoral
Fellowship (R.L.P.) and Professor M.D. Ward for providing
facilities for the spectroelectrochemical studies.
C5H4Me)][PF6]2 trans-12+2[PF6]−. To
a
stirred solution
5
of trans-[(dppm)(CO)2{(PhO)3P}Mn(l-NC)Mn(PPh3)(NO)(g -
C5H4Me)][PF6] trans-1+[PF6]− (150 mg, 0.133 mmol) in CH2Cl2
(20 cm3) was added [NO][PF6] (26 mg, 0.146 mmol). After 50 min
the resulting purple solution was filtered through Celite, n-Hexane
(20 cm3) was added and the volume of the solution was reduced in
vacuo to induce precipitation of a purple solid which was washed
with n-hexane–Et2O (1 : 1) (20 cm3) and dried in vacuo, yield
93 mg (55%).
References
1 G. A. Carriedo, N. G. Connelly, M. C. Crespo, I. C. Quarmby, V. Riera
and G. H. Worth, J. Chem. Soc., Dalton Trans., 1991, 315.
2 G. A. Carriedo, N. G. Connelly, S. Alvarez, E. Perez-Carreno and S.
Garcia-Granda, Inorg. Chem., 1993, 32, 272.
3 C. J. Adams, K. M. Anderson, M. Bardaji, N. G. Connelly, N. J.
Goodwin, E. Llamas-Rey, A. G. Orpen and P. H. Rieger, Dalton Trans.,
2004, 683.
4 K. M. Anderson, N. G. Connelly, E. Llamas-Rey, A. G. Orpen and
R. L. Paul, Chem. Commun., 2001, 1734.
5 N. G. Connelly, K. A. Hassard, B. J. Dunne, A. G. Orpen, S. J. Raven,
G. A. Carriedo and V. Riera, J. Chem. Soc., Dalton Trans., 1988, 1623;
C. F. Hogan, A. M Bond, A. K. Neufeld, N. G. Connelly and E.
Llamas-Rey, J. Phys. Chem. A, 2003, 107, 1274.
6 D. A. Dows, A. Haim and W. K. Walmarth, J. Inorg. Nucl. Chem., 1961,
21, 33.
7 S. F. A. Kettle, E. Diana, E. Boccaleri and P. L. Stanghellini, Inorg.
Chem., 2007, 46, 2409.
8 A. J. Deeming, G. P. Proud, H. M. Dawes and M. B. Hursthouse,
Polyhedron, 1988, 7, 651.
9 D. J. Darensbourg, J. C. Yoder, M. W. Holtcamp, K. K. Klausmeyer
and J. H. Reibenspies, Inorg. Chem., 1996, 35, 4764.
10 F. R. Fronczek and W. P. Schaefer, Inorg. Chem., 1974, 13, 727.
11 N. Zhu and H. Vahrenkamp, Angew. Chem., Int. Ed. Engl., 1994, 33,
2090.
12 Cambridge Structural Database, version 5.21, CCDC, April 2002.
13 C. J. Adams, N. G. Connelly, N. J. Goodwin, O. D. Hayward, A. G.
Orpen and A. J. Wood, Dalton Trans., 2006, 3584.
14 A. Geiss, M. J. Kolm, C. Janiak and H. Vahrenkamp, Inorg. Chem.,
2000, 39, 4037.
15 N. S. Hush, Prog. Inorg. Chem., 1967, 8, 391; N. S. Hush, Coord. Chem.
Rev., 1985, 64, 135.
16 N. G. Connelly, O. M. Hicks, G. R. Lewis, A. G. Orpen and A. J. Wood,
Chem. Commun., 1998, 517.
17 G. A. Carriedo, M. C. Crespo, V. Riera, M. G. Sanchez, M. L.
Valin, D. Moreiras and X. Solans, J. Organomet. Chem., 1986,
302, 47.
18 F. Bombin, G. A. Carriedo, J. A. Miguel and V. Riera, J. Chem. Soc.,
Dalton Trans., 1981, 2049.
19 T. A. James and J. A. McCleverty, J. Chem. Soc. A, 1970, 850.
20 D. Bellamy, N. G. Connelly, O. M. Hicks and A. G. Orpen, J. Chem.
Soc., Dalton Trans., 1999, 3190.
21 D. L. Reger, D. J. Fauth and M. D. Dukes, J. Organomet. Chem., 1979,
170, 217.
22 N. G. Connelly and W. E. Geiger, Chem. Rev., 1996, 96, 877.
23 A. L. Spek, SQUEEZE, incorporated into PLATON: A Multipurpose
Crystallographic Tool, Utrecht University, Utrecht, The Netherlands,
2005.
The complexes trans-22+2[PF6]−–102+2[PF6]− were prepared sim-
ilarly as purple solids.
Crystal structure determinations of cis-2+[PF6]−,
trans-7+[PF6]−·Me2CO, cis-8+[PF6]−·1.5CH2Cl2,
cis-9+[PF6]−·CH2Cl2, cis-12+[PF6]− and trans-17+[PF6]−·Me2CO
Crystals suitable for X-ray diffraction study were grown as follows:
orange-red crystals of cis-2+[PF6]−, cis-8+[PF6]−·1.5CH2Cl2, cis-
9+[PF6]−·CH2Cl2 and cis-12+[PF6]−, slow diffusion of n-hexane
◦
into a concentrated CH2Cl2 solution of the complex at −20 C;
orange-red crystals of trans-7+[PF6]−·Me2CO and dark green
crystals of trans-17+[PF6]−·Me2CO, slow diffusion of diethyl ether
into an acetone solution of the salt at −20 ◦C.
Crystals of trans-7+[PF6]− and trans-17+[PF6]− both contain
one molecule of acetone per asymmetric unit, whilst that of cis-
8+[PF6]− contains 1.5 equivalents of CH2Cl2 per asymmetric unit
and that of cis-9+[PF6]− contains one molecule of CH2Cl2 per
asymmetric unit. The But group of trans-7+ is rotationally disor-
dered over two positions in an approximately 3 : 1 ratio, and two of
the ethyl groups of the P(OEt)3 ligand of cis-8+ are each disordered
over two positions in a 1 : 1 ratio. The structure of cis-9+ contains
two disordered phenyl rings belonging to the dppm ligand, and
two disordered OPh groups on the P(OPh)3 ligand. The orientation
of the cyanide bridges in all structures was assigned on the basis
of the best agreement for the thermal parameters and occupancy
factors for the C and N atoms after refinement in two alternative
models in which the C and N atoms were exchanged.
For cis-12+, the crystal also contained disordered solvent
molecules which could not be resolved. This was modelled using
the programme SQUEEZE,23 which found the unit cell to contain
3
˚
four voids of 243 A , each containing 52 electrons, and four voids
3
˚
of 263 A each containing 48 electrons. This is believed to be due to
the presence of highly disordered CH2Cl2 molecules located within
these voids.
3622 | Dalton Trans., 2007, 3609–3622
This journal is
The Royal Society of Chemistry 2007
©