282
G.V. Shanbhag et al. / Journal of Catalysis 250 (2007) 274–282
In the second set, the reactions were carried out by reacting
[7] Y. Li, T.J. Marks, J. Am. Chem. Soc. 120 (1998) 1757.
[8] A. Haskel, T. Straub, M.S. Eisen, Organometallics 15 (1996) 3773.
[9] P.J. Walsh, A.M. Baranger, R.G. Bergman, J. Am. Chem. Soc. 114 (1992)
1708.
[10] F. Pohlki, S. Doye, Chem. Soc. Rev. 32 (2003) 104.
[11] J. Penzien, T.E. Muller, J.A. Lercher, Chem. Commun. (2000) 1753.
[12] J. Penzien, C. Haeßner, A. Jentys, K. Köhler, T.E. Müller, J. Lercher,
J. Catal. 221 (2004) 302.
[13] J. Penzien, T.E. Muller, J.A. Lercher, Micropor. Mesopor. Mater. 48
(2001) 285.
[14] J. Penzien, R.Q. Su, T.E. Muller, J. Mol. Catal. A Chem. 182 (2002) 489.
[15] M.K. Richmond, S.L. Scott, H. Alper, J. Am. Chem. Soc. 123 (2001)
10521.
different alkynes with 2,4-xylidine (Table 4). Aromatic alkynes
were more reactive than aliphatic alkynes, whereas terminal
alkynes gave the higher yields. Internal alkynes (entries 3 and 5)
did not undergo the reaction, indicating that this catalyst is suit-
able only for the hydroamination of terminal alkynes. The ac-
tivated alkynes with electron-donating substituents, CH3– and
CH3O–, gave better yields (entries 6 and 7), whereas the larger
molecules, like 1-ethynylnaphthalene, showed high conversion
(46%).
4. Conclusion
[16] S. Breitenlechner, M. Fleck, T.E. Müller, A. Suppan, J. Mol. Catal. A
Chem. 214 (2004) 175.
[17] N. Lingaiah, N.S. Babu, K.M. Reddy, P.S.S. Prasad, I. Suryanarayana,
Chem. Commun. (2007) 278.
[18] R. Ryoo, S. Jun, J.M. Kim, M.J. Kim, Chem. Commun. (1997) 2225.
[19] B.Z. Zhan, B. Moden, J. Dakka, J.G. Santiesteban, E. Iglesia, J. Catal. 245
(2007) 316.
[20] M.F. Ribeiro, J.M. Silva, S. Brimaud, A.P. Antunes, E.R. Silva, A. Fernan-
des, P. Magnoux, D.M. Murphy, Appl. Catal. B 70 (2007) 384.
[21] B.M. Choudary, M. Sateesh, M.L. Kantam, K.V.R. Prasad, Appl. Catal.
A 171 (1998) 155.
[22] C.T. Abreu, M.F. Ribeiro, C. Henriques, G. Delahay, Appl. Catal. B 12
(1997) 249.
Cu2+ ion-exchanged AlSBA-15 catalysts were effectively
used in intermolecular hydroamination of phenylacetylene with
2,4-xylidine. The state and behavior of copper in AlSBA-15
materials depend strongly on the method used for Cu inclu-
sion. The reaction was catalyzed by Cu2+ ions obtained by
exchanging with protons of AlSBA-15, not by the unexchanged
copper present as its oxide. AlSBA-15 and AlMCM-41 were
the best supports compared with zeolite beta and clay, whereas
Cu- and Zn-exchanged AlSBA-15 catalysts showed higher ac-
tivity compared with other metals. The alkynes and amines with
electron-donating substituents showed higher activity, whereas
the presence of electron-withdrawing groups on the aromatic
ring retards the reaction. The catalyst did not catalyze hydroam-
ination reactions involving internal alkynes, aromatic secondary
amines, and aliphatic amines. These findings indicate that the
CuAlSBA-15 catalyst is a versatile and reusable catalyst for in-
termolecular hydroamination of terminal alkynes with aromatic
primary amines.
[23] V.A. Matyashak, A.N. Ilichev, A.A. Ukharsky, V.N. Korchak, J. Catal. 171
(1997) 245.
[24] H. Yahiro, M. Iwamoto, Appl. Catal. A 222 (2001) 163.
[25] V. Nieminen, N. Kumar, J. Datka, J. Paivarinta, M. Hotokka, E. Laine,
T. Salmi, D.Y. Murzin, Micropor. Mesopor. Mater. 60 (2003) 159.
[26] I. Sobczak, M. Ziolek, M. Renn, P. Decyk, I. Nowak, M. Daturi, J. Laval-
ley, Micropor. Mesopor. Mater. 74 (2004) 23.
[27] Z. Luan, M. Hartmann, D. Zhao, W. Zhou, L. Kevan, Chem. Mater. 11
(1999) 1621.
[28] G.V. Shanbhag, S.B. Halligudi, J. Mol. Catal. A Chem. 222 (2004) 223.
[29] T. Joseph, G.V. Shanbhag, S.B. Halligudi, J. Mol. Catal. A Chem. 236
(2005) 139.
Acknowledgments
[30] G.V. Shanbhag, S.M. Kumbar, T. Joseph, S.B. Halligudi, Tetrahedron.
Lett. 47 (2006) 141.
[31] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka,
G.D. Stucky, Science 279 (1998) 548.
[32] A. Bordoloi, B.M. Devassy, P.S. Niphadkar, P.N. Joshi, S.B. Halligudi,
J. Mol. Catal. A 253 (2006) 239.
Support was provided by CSIR, New Delhi (a Senior Re-
search Fellowship to G.V.S.) and DST, New Delhi.
References
[33] E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373.
[34] R. Anwander, C. Palm, G. Gerstberger, O. Groeger, G. Engelhardt, Chem.
Commun. (1998) 1811.
[35] W. Kolodziejski, A. Corma, M.T. Navarro, J. Perez-Periente, Solid State
Nucl. Magn. Reson. 2 (1993) 253.
[36] T.F. Guidry, G.L. Price, J. Catal. 181 (1999) 16.
[37] C. Torre-Abreu, M.F. Ribeiro, C. Henriques, G. Delahay, Appl. Catal. B 12
(1997) 249.
[1] T.E. Müller, M. Beller, Chem. Rev. 98 (1998) 675.
[2] R.W. Layer, Chem. Rev. 63 (1963) 489.
[3] J.A. Loritsch, R.R. Vogt, J. Am. Chem. Soc. 61 (1939) 1462.
[4] J. Barluenga, F. Aznar, R. Liz, R. Rodes, J. Chem. Soc. Perkin Trans. 1
(1980) 2732.
[5] D. Tzalis, C. Koradin, P. Knochel, Tetrahedron Lett. 40 (1999) 6193.
[6] Y. Li, T.J. Marks, Organometallics 15 (1996) 3770.
[38] R.Q. Su, T.E. Muller, Tetrahedron 57 (2001) 6027.