5128
S. A. Patel et al. / Bioorg. Med. Chem. Lett. 17 (2007) 5125–5128
c-carboxyl model region, the glutamic acid (E) side
chain carboxyl moiety corresponds to the pharmaco-
phore H-bonding acceptor group, and the C-terminal
tryptophan (W) is consistent with the aromatic ring lipo-
philic pocket superposition area. Taken together, QIEW
may block glutamate transport at VGLUT because it
contains three ligand structural binding elements similar
in 3D space to the more potent inhibitor ligand pharma-
cophore groups. Although the lesser potency of QIEW
likely results from the conformational flexibility, its
identity as a VGLUT inhibitor is consistent with the ba-
sic QDC-template peptide design strategy (Fig. 2).
References and notes
1. Thompson, C. M.; Davis, E.; Carrigan, C. N.; Cox, H. D.;
Bridges, R. J.; Gerdes, J. M. Curr. Med. Chem. 2005, 12,
2041.
2. Fykse, E. M.; Fonnum, F. Neurochem. Res. 1996, 21,
1053.
3. Maycox, P. R.; Deckwerth, T.; Hell, J. W.; Jahn, R. J.
Biol. Chem. 1988, 263, 15423.
4. Tabb, J. S.; Kish, P. E.; Van Dyke, R.; Ueda, T. J. Biol.
Chem. 1992, 267, 15412.
5. Wolosker, H.; de Souza, D. O.; de Meis, L. J. Biol. Chem.
1996, 271, 11726.
6. Cidon, S.; Sihra, T. S. J. Biol. Chem. 1989, 264, 8281.
7. Hartinger, J.; Jahn, R. J. Biol. Chem. 1993, 268, 23122.
8. Bartlett, R. D.; Esslinger, C. S.; Thompson, C. M.;
Bridges, R. J. Neuropharmacology 1998, 37, 839.
9. Bridges, R. J.; Lovering, F. E.; Koch, H.; Cotman, C. W.;
Chamberlin, A. R. Neurosci. Lett. 1994, 174, 193.
10. Garlin, A. B.; Sinor, A. D.;Sinor, J. D.;Jee, S. H.;Grinspan,
J. B.; Robinson, M. B. J. Neurochem. 1995, 64, 2572.
11. Naito, S.; Ueda, T. J. Neurochem. 1985, 44, 99.
12. Bridges, R. J.; Kavanaugh, M. P.; Chamberlin, A. R.
Curr. Pharm. Des. 1999, 5, 363.
13. Keller, B. U.; Blaschke, M.; Rivosecchi, R.; Hollmann,
M.; Heinemann, S. F.; Konnerth, A. Proc. Natl. Acad. Sci.
U.S.A. 1993, 90, 605.
14. Carrigan, C. N.; Bartlett, R. D.; Esslinger, C. S.; Cybulski,
K. A.; Tongcharoensirikul, P.; Bridges, R. J.; Thompson,
C. M. J. Med. Chem. 2002, 45, 2260.
15. Carrigan, C. N.; Esslinger, C. S.; Bartlett, R. D.; Bridges, R.
J.;Thompson, C.M. Bioorg. Med.Chem.Lett. 1999,9, 2607.
16. Peptides were synthesized with DIPCDI/HOBt using
Fmoc methodology on a Cl–Trt–Cl (2-chlorotrityl chlo-
ride) resin and cleaved from the resin bead by treatment
with 4:1 CH2Cl2/HOAc for 3 h. Peptides were treated with
TFA to remove protecting groups.
17. Vesicular transport was quantified as described Kish, P. E.;
Ueda, T. Methods Enzymol. 1989, 174, 9, Assays were
initiated by the addition of 3H-L-glutamate inhibitors
(0.01–5 mM) to the synaptic vesicles (approx. 0.1 mg
protein). Rates of uptake were normalized to protein
content.
Moreover, examination of the Q-X2-E-W library
reveals an enhanced peptide inhibition efficacy when
X2 = isoleucine (I). Thus, ligands with terminal aro-
matic ring groups and an additional lipophilic side
chain residue (e.g., W and I of QIEW; W and F
of WNEF, not shown) might be related to the dis-
tinct dual lipophilic moieties (the terminal aromatic
rings and distal propyl groups) of the more potent
VGLUT inhibitor bromocryptine. Collectively, the
lipophilic peptide and bromocryptine moieties could
be important structural facets for enhanced VGLUT
inhibition. Full conformational analyses of QIEW
and WNEF and their superposition within the phar-
macophore model are currently underway to discern
the relative 3D arrangement of the lipophilic
groups.
The discovery of tetrapeptide inhibitors raises the possi-
bility that they may represent protein motifs that may
bind VGLUT. BLAST analysis (rodentia)20,21 matched
a Ca+-transporting ATPase (WNEF), neuroprotective
protein (QIEW), and vasohibin (QIEW). We are cur-
rently examining the possibility of protein binding to
VGLUT using these leads.
Acknowledgments
18. Highly lipophilic peptides displayed poor solubility and
were first solubilized in acetonitrile and then diluted into
the Hepes assay buffer.
19. Carlson, M. D.; Kish, P. E.; Ueda, T. J. Biol. Chem. 1989,
264, 7369.
20. Altschul, S. F.; Koonin, E. V. Trends Biochem. Sci. 1998,
23, 444.
21. Altschul, S. F.; Madden, T. L.; Schaffer, A. A.; Zhang, J.;
Zhang, Z.; Miller, W.; Lipman, D. J. Nucleic Acids Res.
1997, 25, 3389.
This research was made possible by grants from the
NIH NS38248 (C.M.T.) and P20 RR15583 from the
COBRE Program of the National Center for Research
Resources. We are grateful for support to the Molecular
Computational Core Facility (NIH NOT-RR-02-005)
and expert assistance of Rohn Wood and Dr. Wes
Smith.