Journal of the American Chemical Society
Communication
modified HypET (HypET-AlpGP) was prepared by hydrolysis of
1,2:3,4-di-O-isopropylidene-α-D-galactopyranose-grafted
HypET with quantum yield = 0.10 in acidic solution (pH = 3) of
THF/H2O (Figures S9 and S10). First we tested cytotoxicity of
the HypET-AlpGP by MTT assay because toxicity is very
important for biological applications. Branched PEI with
molecular weight of 25k (PEI25k) was used as the control. In
Figure 4a, the PEI25k exhibits high cytotoxicity to HepG2 cells
applications including cell imaging, biosensing, and drug
delivery.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and characterization data. This material is
■
S
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Work is supported by the National Natural Science Foundation
of China under contract no. 20974103, 21074121, and
21090354. We thank Prof. A.-D. Xia from Institute of Chemistry,
Sinica for helpful discussion on fluorescence of polymers.
REFERENCES
■
(1) (a) Domaille, Dylan W.; Que, Emily. L.; Chang, Christopher J. Nat.
Chem. Biol. 2008, 4, 168. (b) De, M.; Rana, S.; Akpinar, H.; Miranda,
Oscar R.; Arvizo, Rochelle R.; Bunz, Uwe H. F.; Rotello, Vincent M. Nat.
Chem. 2009, 1, 461.
(2) (a) Wu, C.; Bull, B.; Szymanski, C.; Christensen, K.; McNeill, J.
ACS Nano 2008, 2, 2415. (b) Zhu, L.; Wu, W.; Zhu, M. Q.; Han, Jason J.;
Hurst, James K.; Li, Alexander D. Q. J. Am. Chem. Soc. 2007, 129, 3524.
(c) Jaiswal, Jyoti K.; Goldman, Ellen R.; Mattoussi, H.; Simon, Sanford
M. Nat. Methods 2004, 1, 73. (d) Jaiswal, Jyoti K.; Mattoussi, H.; Mauro,
J. Matthew; Simon, Sanford M. Nat. Biotechnol. 2003, 21, 47.
(3) (a) Yang, J. Y.; Zhang, Y.; Gautam, S.; Liu, L.; Dey, J.; Chen, W.;
Mason, Ralph P.; Serrano, Carlos A.; Schug, Kavin A.; Tang, L. Proc. Natl
Acad. Sci. U.S.A. 2009, 106, 10086. (b) Pucci, A.; Rausa, R.; Ciardelli, F.
Macromol. Chem. Phys. 2008, 209, 900.
Figure 4. Cytotoxicity and cell imaging of the HypET-AlpGP. (a)
Cytotoxicity of the HypET-AlpGP to HepG2 cells. (b) Laser confocal
scanning microscopic images of the HepG2 cells after 9 h incubation
with a serum-free DMEM solution of HypET-AlpGP (2 mg/mL) under
excitation at λex = 375 nm (ba) and bright field (bb); (bc) is a merged
picture of (ba) and (bb).
(4) Freeman, C. G.; McEwan, M. J.; Claridge, R. F. C.; Phillips, L. F.
Chem. Phys. Lett. 1971, 8, 77.
(5) Beecroft, Richard A.; Davidson, R. Steven J. Chem. Soc., Perkin
Trans. 2 1985, 1069.
(6) Beecroft, Richard A.; Davidson, R. Steven J. Chem. Soc., Perkin
with 50% cell viability at the concentration of 15 μg/mL. In
contrast, only slight decrease (less than 10%) of the cell viability
was observed for the HypET-AlpGP at a dose up to 500 μg/mL.
Liver carcinoma HepG2 cells can recognize galactose residues
through an asialoglycoprotein receptor on the surface,20 so
modified HypET (2 mg/mL) was incubated with HepG2 cells at
37 °C for 9 h, and then the cells were washed with phosphate-
buffered saline for removal of the HypET-AlpGP that was not
internalized. The obtained cells were observed under laser
confocal scanning microscopy. When excited at 375 nm (Figure
4b), blue HepG2 cells are clearly observed, indicating potential
application of HypETs in cell imaging. These preliminary results
demonstrate that the HypET-AlpGP is a suitable candidate for
cell imaging, biosensing, and drug delivery.
In summary, we demonstrated that the tertiary aliphatic amine
in branching units of hyperbranched polymers is key in retaining
high fluorescence efficiency of the tertiary amine. Linear
polymers with a tertiary amine in the backbone or as a side
group emit weak fluorescence. Molecular weight of hyper-
branched polymers is an important factor, and the fluorescence
efficiency increases with increasing molecular weights. Aliphatic
tertiary amine-based hyperbranched polymers are easily oxidized,
and the oxidized products exhibit different fluorescence
properties from the precursors. HypET-AlpGP has low
cytotoxicity and displays bright cell imaging. Thus we provide
a new route of designing fluorescent materials for various
Trans. 2 1985, 1063.
(7) Halpern, Arthur M.; Gartman, T. J. Am. Chem. Soc. 1974, 96, 1393.
(8) Halprrn, Arthur M.; Wryzykowska, K. J. Photochem. 1981, 15, 147.
(9) Muto, Y.; Nakato, Y.; Tsubomura, H. Chem. Phys. Lett. 1971, 9,
597.
(10) (a) Cardoza, Job D.; Rudakov, Fedor M.; Weber, Peter M. J. Phys.
Chem. A 2008, 112, 10736. (b) Minitti, Michael P.; Weber, Peter M.
Phys. Rev. Lett. 2007, 98, 253004.
(11) (a) Wang, D.; Imae, T. J. Am. Chem. Soc. 2004, 126, 13204.
(b) Lee, W. I.; Bae, Y.; Bard, Allen L. J. Am. Chem. Soc. 2004, 126, 8358.
(12) Yang, W.; Pan, C.-Y. Macromol. Rapid Commun. 2009, 30, 2096.
(13) Gruber, A.; Drabenstedt, A.; Tietz, C.; Fleury, L.; Wrachtrup, J.;
̈
Borczyskowski, C. von. Science 1997, 276, 2012.
(14) Williams, Alun T. R.; Winfield, Stephen A.; Miller, James N.
Analyst 1983, 108, 1067.
(15) Yang, W.; Pan, C.-Y.; Liu, X. Q.; Wang, J. Biomacromolecules 2011,
12, 1523.
(16) Larson, Charlotte L.; Tucker, Sheryl A. Appl. Spectrosc. 2001, 55,
679.
(17) Meltzer, A. Donald; Tirrell, David A.; Jones, Alan A.; Inglefield,
Paul T. Macromolecules 1992, 25, 4541.
(18) Chu, C. C.; Imae, T. Macromol. Rapid Commun. 2009, 30, 89.
(19) Silverstein, Robert M., Webster, Francis X., Kiemle, David J.
Spectrometric Identification of Organic Compounds, 7th ed.; Wiley: New
York, 2005; p 102.
(20) Seymour, Len W. Adv. Drug Delivery Rev. 1994, 14, 89.
D
dx.doi.org/10.1021/ja310236m | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX