Communications
Chem. Rev. 1998, 98,2685 – 2722; b) H. Braunschweig, Angew.
Chem. 1998, 110,1882 – 1898; Angew. Chem. Int. Ed. 1998, 37,
1786 – 1801; c) H. Braunschweig,M. Colling, Coord. Chem. Rev.
2001, 223,1 – 51; d) H. Braunschweig,C. Kollann,D. Rais,
Angew. Chem. 2006, 118,5380 – 5400; Angew. Chem. Int. Ed.
2006, 45,5254 – 5274; e) M. R. Smith III, Prog. Inorg. Chem.
1999, 48,505 – 567; f) S. Aldridge,D. L. Coombs, Coord. Chem.
Rev. 2004, 248,535 – 559.
in trans influence between unsaturated and saturated systems
À
generally seems to be negligible,although the Au P bond in
À
7b is slightly longer than that in 7a. The order of M B and
À
M C bond lengths among 4a,b–6a,b is Cu < Au < Ag,which
reflects the ionic radii (Cu < Ag < Au) and the relativistic
effect[26] that leads the gold atom to be smaller than silver
atom. Borylgold complexes 6a,b and 7a,b showed no
significant intermolecular aurophilic interaction,[27] which is
probably due to the bulky boryl ligands.
[2] a) D. Männig,H. Nöth, Angew. Chem. 1985, 97,854 – 855;
Angew. Chem. Int. Ed. Engl. 1985, 24,878 – 879; b) T. Ishiyama,
J. Takagi,K. Ishida,N. Miyaura,N. R. Anastasi,J. F. Hartwig, J.
Am. Chem. Soc. 2002, 124,390 – 391.
[3] a) K. M. Waltz,J. F. Hartwig, J. Am. Chem. Soc. 2000, 122,
11358 – 11369; b) T. M. Boller,J. M. Murphy,M. Hapke,T.
Ishiyama,N. Miyaura,J. F. Hartwig, J. Am. Chem. Soc. 2005, 127,
14263 – 14278; c) S. A. Westcott,N. J. Taylor,T. B. Marder,R. T.
In conclusion,we have demonstrated the nucleophilic
substitution by boryllithium compounds 2a,b on Group 11
metal chloride complexes to form boryl complexes 4a,b–7a,b.
Complexes 5a,b–7a,b are the first examples of borylsilver and
À
borylgold complexes that have 2c-2e M B bonds. This
methodology may be applicable to the synthesis of other
boryl complexes. The NMR spectra and solid-state structures
of the resulting boryl complexes revealed that the boryl ligand
is one of the strongest known s donors.[20] Saturation of the
boryl ligand skeleton had little influence on its donor ability.
The further reactivity of these boryl complexes is under
investigation.
Baker,N. J. Jones,J. C. Calabrese,
J. Chem. Soc. Chem.
Commun. 1991,304 – 305; d) R. T. Baker,J. C. Calabrese,S. A.
Westcott,P. Nguyen,T. B. Marder, J. Am. Chem. Soc. 1993, 115,
4367 – 4368; e) G. Lesley,P. Nguyen,N. J. Taylor,T. B. Marder,
A. J. Scott,W. Clegg,N. C. Norman, Organometallics 1996, 15,
5137 – 5154.
[4] The first example of a boryl complex synthesized by salt
elimination: H. Nöth,G. Schmid, Angew. Chem. 1963, 75,861 –
862; Angew. Chem. Int. Ed. Engl. 1963, 2,623; the first
structurally characterized boryl complex made by salt elimina-
tion: J. F. Hartwig,S. Huber, J. Am. Chem. Soc. 1993, 115,4908 –
4909.
[5] The first example of a boryl complex synthesized by oxidative
addition: G. Schmid,H. Nöth, Z. Naturforsch. B 1965, 20,1008 –
1008; the first structurally characterized boryl complex made by
oxidative addition: R. T. Baker,D. W. Ovenall,J. C. Calabrese,
S. A. Westcott,N. J. Taylor,I. D. Williams,T. B. Marder, J. Am.
Chem. Soc. 1990, 112,9399 – 9400.
Experimental Section
2b: In a glovebox, 1b (50 mg,106 mmol) and naphthalene (2.7 mg,
21 mmol) were dissolved in [D8]THF (1 mL). Lithium powder (7.4 mg,
1.07 mmol) was added to the solution at À458C,and the resulting
suspension was stirred for 35 h at À458C to afford a dark red
suspension. An aliquot of this suspension was transferred into a
screw-capped NMR tube to record the NMR spectra. 1H NMR
([D8]THF,500 MHz): d = 1.21 (d, J = 7 Hz,12H),1.22 (d, J = 7 Hz,
12H),3.44 (s,4H),3.84 (sep, J = 7 Hz,4H),6.97 (dd, J = 9 Hz,6 Hz,
2H),7.02 ppm (d, J = 7 Hz,4H); 13C NMR ([D8]THF,125 MHz): d =
[6] Y. Kawano,T. Yasue,M. Shimoi, J. Am. Chem. Soc. 1999, 121,
11744 – 11750.
[7] a) K. Takahashi,T. Ishiyama,N. Miyaura, J. Organomet. Chem.
2001, 625,47 – 53; b) H. Ito,C. Kawakami,M. Sawamura, J. Am.
Chem. Soc. 2005, 127,16034 – 16035.
25.46 (CH3),25.55 (CH ),28.9 (CH),55.1 (CH 2),123.5 (CH),124.7
3
(CH),149.3 (quaternary C),149.7 ppm (quaternary C); 11B NMR
([D8]THF,160 MHz): d = 51.9 ppm (br s).
[8] D. S. Laitar,P. Mueller,J. P. Sadighi, J. Am. Chem. Soc. 2005, 127,
17196 – 17197.
[9] Y. Segawa,M. Yamashita,K. Nozaki, Science 2006, 314,113 –
115.
[10] M. Yamashita,Y. Suzuki,Y. Segawa,K. Nozaki, J. Am. Chem.
Soc. 2007,DOI: 10.1021/ja073037t.
[11] a) W. A. Herrmann,C. Köcher, Angew. Chem. 1997, 109,2256 –
2282; Angew. Chem. Int. Ed. Engl. 1997, 36,2162 – 2187;
b) W. A. Herrmann, Angew. Chem. 2002, 114,1342 – 1363;
Angew. Chem. Int. Ed. 2002, 41,1290 – 1309.
[12] a) R. Dorta,E. D. Stevens,N. M. Scott,C. Costabile,L. Cavallo,
C. D. Hoff,S. P. Nolan, J. Am. Chem. Soc. 2005, 127,2485 – 2495;
b) A. C. Hillier,W. J. Sommer,B. S. Yong,J. L. Petersen,L.
Cavallo,S. P. Nolan, Organometallics 2003, 22,4322 – 4326.
[13] a) M. Scholl,T. M. Trnka,J. P. Morgan,R. H. Grubbs, Tetrahe-
dron Lett. 1999, 40,2247 – 2250; b) M. S. Sanford,M. Ulman,
R. H. Grubbs, J. Am. Chem. Soc. 2001, 123,749 – 750; c) M. S.
Sanford,J. A. Love,R. H. Grubbs, J. Am. Chem. Soc. 2001, 123,
6543 – 6554.
4a,b–7a,b: In a glovebox, 1a or 1b (1 equiv) and naphthalene
(0.40 equiv) were dissolved in THF (10 mL per mmol of 1). Lithium
powder (10 equiv) was added to the solution at À458C,and the
resulting suspension was stirred for 20 h at À458C to afford a dark red
suspension. The suspension was filtered through a celite pad to
remove excess lithium and lithium naphthalenide. The filtrate was
added at À458C to a THF solution (see the Supporting Information
for each condition) of metal chloride complex (1.0 equiv),and the
resulting suspension was stirred for 1 h at room temperature. After
solvents were evaporated under reduced pressure,hexane was added
to the residue. The resulting suspension was filtered through a celite
pad,and the residue was washed with hexane. Volatiles were removed
from the filtrate,and recrystallization from toluene gave colorless
crystals of the desired product. An analytically pure sample was
obtained by recrystallization from hexane or toluene. Details of
spectroscopic and analytical data for each compound are described in
the Supporting Information.
Received: May 31,2007
Published online: July 30,2007
[14] Recently,Braunschweig indicated the possibility of a significant
development in the area of metal boryl complexes using boryl-
lithium,see: H. Braunschweig, Angew. Chem. 2007, 119,1990 –
1992; Angew. Chem. Int. Ed. 2007, 46,1946 – 1948; a related
synthesis of gallyl complexes using gallyl anions was reported,
see: S. P. Green,C. Jones,D. P. Mills,A. Stasch, Organometallics
2007, 26,3424-3430.
Keywords: B ligands · boron · boryl anion · Group 11 elements ·
.
structure elucidation
[1] a) G. J. Irvine,M. J. G. Lesley,T. B. Marder,N. C. Norman,C. R.
Rice,E. G. Robins,W. R. Roper,G. R. Whittell,L. J. Wright,
[15] a) L. Weber, Coord. Chem. Rev. 2001, 215,39 – 77; b) L. Weber,
Coord. Chem. Rev. 2007,DOI: 10.1016/j.ccr.2007.02.014.
6712
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 6710 –6713