LETTER
Green Chemistry Method for the Regeneration of Carbonyl Compounds
1031
1984, 337. (h) Olah, G. A.; Arvanaghi, M.; Prakash, G. K. S.
Synthesis 1980, 220. (i) Pojer, P. M. Aust. J. Chem. 1979,
32, 201. (j) Timms, G. H.; Wildsmith, E. Tetrahedron Lett.
1971, 12, 195. (k) Corey, E. J.; Richman, J. E. J. Am. Chem.
Soc. 1970, 92, 5276. (l) Pines, S. H.; Chemerda, J. M.;
Kozlowski, M. A. J. Org. Chem. 1966, 31, 3446.
(7) Numerous methods for the oxidative deoximation have been
reported, recent examples are as follows: (a) Zhou, X.-T.;
Yuan, Q.-L.; Ji, H.-B. Tetrahedron Lett. 2010, 51, 613.
(b) Shaabani, A.; Farhangi, E. Appl. Catal., A 2009, 371,
148. (c) Ganguly, N. C.; Barik, S. K. Synthesis 2008, 425.
(d) Gupta, P. K.; Manral, L.; Ganesan, K. Synthesis 2007,
1930. (e) Gogoi, P.; Hazarika, P.; Konwar, D. J. Org. Chem.
2005, 70, 1934. (f) Shaabani, A.; Naderi, S.; Rahmati, A.;
Badri, Z.; Darvishi, M.; Lee, D. G. Synthesis 2005, 3023.
(g) Khazaei, A.; Manesh, A. A. Synthesis 2005, 1929.
(h) Jain, N.; Kumar, A.; Chauhan, S. M. S. Tetrahedron Lett.
2005, 46, 2599. (i) Li, Z.; Ding, R.-B.; Xing, Y.-L.; Shi,
S.-Y. Synth. Commun. 2005, 35, 2515. (j) Khazaei, A.;
Manesh, A. A. Synthesis 2004, 1739. (k) Yang, Y.; Zhang,
D.; Wu, L.-Z.; Chen, B.; Zhang, L.-P.; Tung, C.-H. J. Org.
Chem. 2004, 69, 4788. (l) Arnold, J. N.; Hayes, P. D.;
Kohaus, R. L.; Mohan, R. S. Tetrahedron Lett. 2003, 44,
9173. (m) Krishnaveni, N. S.; Surendra, K.; Nageswar, Y. V.
D.; Rao, K. R. Synthesis 2003, 1968. (n) Narsaiah, A. V.;
Nagaiah, K. Synthesis 2003, 1881. (o) Bose, D. S.; Reddy,
A. V. N.; Das, A. P. R. Synthesis 2003, 1883.
Cu(OH)2·2H2O completely precipitated as a bluish sol-
id.16 Moreover, when the above Cu(OH)2·2H2O was con-
verted into CuCl2·2H2O, it could be reused for the
hydrolysis of oximes without any observable difference
from the commercial one.17
In conclusion, a mild, efficient, and general method for
the regeneration of carbonyl compounds from their corre-
sponding oximes has been developed. Some merits such
as simple manipulation, mild reaction conditions, high
yields, wild scope of application, cheapness of cupric
chloride dihydrate, as well as the complete recovery of the
cupric salt might allow this green method to be very useful
for the regeneration of ketones and aldehydes from vari-
ous ketoximes and aldoximes.
Acknowledgment
We thank the National Natural Science Foundation of China (No.
20972048) and the Shanghai Educational Development Foundation
(The Dawn Program: No. 03SG27) for the financial support of this
work.
References and Notes
(p) Chandrasekhar, S.; Gopalaiah, K. Tetrahedron Lett.
2002, 43, 4023. (q) Khazaei, A.; Vaghei, R. G. Tetrahedron
Lett. 2002, 43, 3073. (r) Hosseinzadeh, R.; Tajbakhsh, M.;
Niaki, M. Y. Tetrahedron Lett. 2002, 43, 9413. (s)Blay,G.;
Benach, E.; Fernandez, I.; Galletero, S.; Pedro, J.; Ruiz, R.
Synthesis 2000, 403.
(1) (a) Corsaro, A.; Chiacchio, M. A.; Pistara, V. Curr. Org.
Chem. 2009, 13, 482. (b) Corsaro, A.; Chiacchio, U.;
Pistara, V. Synthesis 2001, 1903.
(2) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic
Synthesis, 3rd ed.; John Wiley: New York, 1999.
(3) Shriner, R. L.; Fuson, R. C.; Curtin, D. Y.; Morrill, T. C. The
Systematic Identification of Organic Compounds, 6th ed.;
John Wiley: New York, 1980.
(4) (a) Wang, K.; Qian, X.; Cui, J. Tetrahedron 2009, 65,
10377. (b) Domingo, L. R.; Picher, M. T.; Arroyo, P.; Sez,
J. A. J. Org. Chem. 2006, 71, 9319. (c) Czekelius, C.;
Carreira, E. M. Angew. Chem. Int. Ed. 2005, 44, 612.
(d) Kabalka, G. W.; Pace, R. D.; Wadgaonkar, P. P. Synth.
Commun. 1990, 20, 2453. (e) Baran, J.; Mayr, H. J. Org.
Chem. 1989, 54, 5012. (f) Barton, D. H.; Beaton, J. M.
J. Am. Chem. Soc. 1961, 83, 4083. (g) Barton, D. H. R.;
Beaton, J. M.; Geller, L. E.; Pechet, M. M. J. Am. Chem. Soc.
1961, 83, 4076.
(8) (a) Chavan, S. P.; Soni, P. Tetrahedron Lett. 2004, 45, 3161.
(b) Maynez, S. R.; Pelavin, L.; Erker, G. J. Org. Chem. 1975,
40, 3302. (c) DePuy, C. H.; Ponder, B. W. J. Am. Chem. Soc.
1959, 81, 4629. (d) Hershberg, E. B. J. Org. Chem. 1948,
13, 542.
(9) Carbonyl compounds can also be regenerated from oximes
via photochemical and electrochemical methods, but only a
few examples have been reported: (a) de Lijser, H. J. P.;
Fardoun, F. H.; Sawyer, J. R.; Quant, M. Org. Lett. 2002, 4,
2325. (b) Haley, M. F.; Yates, K. J. Org. Chem. 1987, 52,
1817. (c) Mandic, Z.; Lopotar, N. Electrochem. Commun.
2005, 7, 45.
(10) Gawly, R. E. Org. React. 1988, 35, 1; and references cited
therein.
(11) Jiang, N.; Ragauskas, A. J. Tetrahedron Lett. 2010, 51,
4479.
(12) Corey, E. J.; Knapp, S. Tetrahedron Lett. 1976, 41, 3667.
(13) Typical Procedure for the CuCl2·2H2O-Promoted
Regeneration of Carbonyl Compounds from Various
Oximes
(5) (a) De S, K. Tetrahedron Lett. 2003, 44, 9055. (b) Shirini,
F.; Zolfigol, M. A.; Safari, A.; Mohammadpoor-Baltork, I.;
Mirjalili, B. F. Tetrahedron Lett. 2003, 44, 7463.
(c) Shirini, F.; Zolfigol, M. A.; Mallakpour, B.; Mallakpour,
S. E.; Hajipour, A. R.; Baltork, I. M. Tetrahedron Lett. 2002,
43, 1555. (d) Lee, S. Y.; Lee, B. S.; Lee, C.-W.; Oh, D. Y.
J. Org. Chem. 2000, 65, 256. (e) Curini, M.; Rosati, O.;
Pisani, E.; Costantino, U. Synlett 1996, 333. (f) Ranu, B. C.;
Sarkar, D. C. J. Org. Chem. 1988, 53, 878. (g) Donaldson,
R. E.; Saddler, J. C.; Byrn, S.; McKenzie, A. T.; Fuchs, P. L.
J. Org. Chem. 1983, 48, 2167. (h) Cava, M. P.; Little, R. L.;
Napier, D. R. J. Am. Chem. Soc. 1958, 80, 2257.
Oxime 1a (1.01 g, 5.12 mmol) was dissolved in MeCN (20
mL), CuCl2·2H2O (1.73 g, 10.15 mmol) and H2O (5 mL)
were added. When the suspension was heated to reflux, the
mixture became a bluish clear solution. The resulting
reaction solution was then stirred at reflux (75 °C) for
around 2 h and monitored by TLC (EtOAc–hexane, 1:6).
After the reaction was complete, the solvents were removed
by vacuum distillation. The residue was partitioned between
EtOAc (50 mL) and H2O (30 mL), the organic and aqueous
phases were separated. Organic phase was washed with
brine (5 mL) and dried over anhyd MgSO4. Concentration of
the organic solution gave crude product, which was purified
by flash chromatography to afford benzophenone (2a, 0.914
g, 5.02 mmol) in 98% yield. To the above-mentioned
(6) (a) Majireck, M. M.; Witek, J. A.; Weinreb, S. M.
Tetrahedron Lett. 2010, 51, 3555. (b) Martin, M.; Martinez,
G.; Urpi, F.; Vilarrasa, J. Tetrahedron Lett. 2004, 45, 5559.
(c) Lukin, K. A.; Narayanan, B. A. Tetrahedron 2002, 58,
215. (d) Watanabe, Y.; Morimoto, S.; Adachi, T.;
Kashimura, M.; Asaka, T. J. Antibiot. 1993, 46, 647.
(e) Akazome, M.; Tsuji, Y.; Watanabe, Y. Chem. Lett. 1990,
635. (f) Curran, D. P.; Brill, J. F.; Rakiewicz, D. M. J. Org.
Chem. 1984, 49, 1654. (g) Barton, D. H. R.; Motherwell, W.
B.; Simon, E. S.; Zard, S. Z. J. Chem. Soc., Chem. Commun.
Synlett 2011, No. 7, 1028–1032 © Thieme Stuttgart · New York