W.-H. Sun et al. / Journal of Organometallic Chemistry 692 (2007) 4506–4518
4515
(75.45 MHz, CDCl3, d): 166.8, 155.9, 153.4, 150.0, 147.7,
3.2.6. (E)-2,6-Dichloro-N-(1-(6-(quinoxalin-2-yl)pyridin-
2-yl)ethylidene)benzenamine (L6)
144.3, 142.7, 141.8, 137.7, 131.2, 130.2, 130.1, 129.7,
129.4, 129.0, 128.2, 126.0, 125.3, 123.4, 122.9, 122.1, 24.6,
21.5, 16.9, 13.7. Anal. Calc. for C25H24N4: N, 14.73; C,
78.92; H, 6.36. Found: N, 14.50; C, 79.30; H, 6.49%.
In the condensation reaction of 2.4 mmol 2,6-dichloro-
aniline (0.39 g) with 2 mmol 1-(6-(quinoxalin-2-yl)pyri-
dine-2-yl)ethanone (0.50 g) in 30 mL of toluene along
with 3 mL of tetraethyl silicate as the water absorbent,
compound L6 was obtained as yellow powder in 31% yield
(0.24 g). Mp: 194–195 ꢂC. IR (KBr, cmÀ1): 1651 (s, mC@N),
1565, 1555, 1433, 1362, 1224, 1115, 1063, 819, 765, 408. 1H
NMR (300 MHz, CDCl3, d): 10.13 (s, 1H, o-quinoxalin-H),
8.80 (d, 1H, J = 7.74 Hz, Py–H ), 8.57 (d, 1H, J = 7.68 Hz,
Py–H), 8.21 (m, 2H, quinoxalin-H), 8.15 (m, 1H, Py–H),
7.85 (m, 2H, quinoxalin-H), 7.33 (d, 2H, J = 8.01 Hz,
Ph–H ), 7.02 (t, 1H, J = 7.74 Hz, Ph–H), 2.51 (s, 3H,
N@C–CH3). 13C NMR (75.45 MHz, CDCl3, d): 171.2,
155.0, 153.4, 149.7, 145.6, 144.1, 142.6, 141.8, 137.8,
130.2, 130.1, 129.7, 129.3, 128.2, 124.5, 124.4, 123.5,
122.8, 17.7. Anal. Calc. for C21H 14Cl2N4: N, 14.25; C,
64.14; H, 3.59. Found: N, 13.81; C, 64.04; H, 3.65%.
3.2.3. (E)-2,6-Diisopropyl-N-(1-(6-(quinoxalin-2-yl)-
pyridin-2-yl)ethylidene)benzenamine (L3)
Using the same procedure as for the synthesis of L1, L3
was obtained as yellow powder in 74% yield. Mp: 215–
216 ꢂC. IR (KBr, cmÀ1): 1637 (s, mC@N), 1568, 1458,
1361, 1241, 1112, 1059, 829, 758, 406. 1H NMR
(300 MHz, CDCl3, d):10.11 (s, 1H, o-quinoxalin-H), 8.74
(d, 1H, J = 7.68 Hz, Py–H), 8.51 (d, 1H, J = 7.89 Hz,
Py–H), 8.20 (m, 2H, quinoxalin-H), 8.04 (t, 1H,
J = 7.80 Hz, Py–H), 7.82 (m, 2H, quinoxalin-H), 7.17 (m,
3H, Ph–H), 2.80 (m, 2H, CH(CH3)2), 2.38 (s, 3H, N@C–
CH3), 1.20 (s, 12H, CH3). 13C NMR (75.45 MHz, CDCl3,
d): 166.8, 155.9, 153.4, 150.0, 146.4, 144.3, 142.7, 141.8,
137.7, 135.8, 130.2, 130.1, 129.7, 129.4, 123.7, 123.0,
122.9, 122.1, 28.3, 23.2, 22.9, 17.3. Anal. Calc. for
C27H28N4: N, 13.71; C, 79.38; H, 6.91. Found: N, 13.69;
C, 78.99; H, 6.84%.
3.2.7. (E)-2,6-Dibromo-N-(1-(6-(quinoxalin-2-yl)pyridin-
2-yl)ethylidene)benzenamine (L7)
Using the same procedure as for the synthesis of L6,
L7 was obtained as yellow powder in 26% yield. Mp:
206–207 ꢂC. IR (KBr, cmÀ1): 1650 (s, mC@N), 1565, 1547,
1426, 1363, 1224, 1114, 1063, 821, 763, 727, 408.
1H NMR (300 MHz, CDCl3, d): 10.10 (s, 1H, o-quinoxa-
lin-H ), 8.77 (d, 1H, J = 7.84 Hz, Py–H), 8.54 (d,
1H, J = 7.8 Hz, Py–H ), 8.19 (m, 2H, quinoxalin-H), 8.05
(t, 1H, Py–H), 7.82 (m, 2H, quinoxalin-H), 7.60 (d, 2H,
J = 8.04 Hz, Ph–H), 6.88 (t, 1H, J = 7.96 Hz, Ph–H),
2.46 (s, 3H, N@C–CH3). 13C NMR (75.45 MHz, CDCl3,
d): 170.9, 155.1, 153.6, 149.9, 148.1, 144.2, 142.7, 141.9,
137.9, 132.0, 130.2, 130.1, 129.8, 129.4, 125.3, 123.6,
122.9, 113.6, 17.7. Anal. Calc. for C21H14Br2N4: N,
11.62; C, 52.31; H, 2.93. Found: N, 11.64; C, 52.46; H,
2.95%.
3.2.4. (E)-2,4,6-Trimethyl-N-(1-(6-(quinoxalin-2-yl)-
pyridin-2-yl)ethylidene)benzenamine (L4)
Using the same procedure as for the synthesis of L1, L4
was obtained as yellow powder in 28% yield. Mp: 132–
133 ꢂC. IR (KBr, cmÀ1): 1645 (s, mC@N), 1568, 1546,
1476, 1361, 1217, 1112, 824, 763, 409. 1H NMR
(300 MHz, CDCl3, d): 10.12 (s, 1H, o-quinoxalin-H), 8.74
(d, 1H, J = 7.89 Hz, Py–H), 8.52 (d, 1H, J = 7.92 Hz,
Py–H), 8.21 (m, 2H, quinoxalin-H), 8.04 (t, 1H,
J = 7.95 Hz, Py–H), 7.84 (m, 2H, quinoxalin-H), 6.94 (s,
2H, Ph–H), 2.36 (s, 3H, N@C–CH3), 2.33 (s, 3H, p-CH3),
2.06 (s, 6H, o-CH3). 13C NMR (75.45 MHz, CDCl3, d):
166.9, 155.7, 152.9, 149.7, 145.8, 143.9, 142.3, 141.5,
137.3, 131.9, 129.8, 129.7, 129.4, 129.0, 128.2, 124.9,
122.6, 121.7, 20.4, 17.5, 16.2. Anal. Calc. for C24H22N4:
N, 15.29; C, 78.66; H, 6.05. Found: N, 14.99; C, 78.38;
H, 6.11%.
3.3. Synthesis of metal complexes
3.3.1. Synthesis of (L)FeCl2 (1–7)
Iron complexes 1–7 were synthesized by the reaction of
FeCl2 Æ 4H2O with the corresponding ligands in THF. A
typical synthetic procedure for complex 1 is described as
follows. A mixture of FeCl2 Æ 4H2O (0.040 g, 0.20 mmol)
with compound L1 (0.071 g, 0.20 mmol) in freshly distilled
THF (5 mL) was stirred at room temperature for 12 h
under nitrogen atmosphere. The precipitate was formed,
collected through a filter, and washed with freshly distilled
diethyl ether. After drying in vacuum, iron(II) complex 1
was obtained as the blue powder in 95% yield (0.092 g).
IR (KBr, cmÀ1): 1623 (m, mC@N), 1592, 1371, 1213, 778,
763, 411. Anal. Calc. for C23H20Cl2FeN4 Æ 3H2O: N,
10.51; C, 51.81; H, 4.91. Found: N, 11.11; C, 51.41; H,
5.08%. leff = 6.2 lB. Data for complex 2 are as follows.
Yield: 42%. IR (KBr, cmÀ1): 1609 (w, mC@N), 1589, 1501,
1482, 1374, 1273, 1198, 1129, 1094, 910, 817, 770, 413.
3.2.5. (E)-2,6-Difluoro-N-(1-(6-(quinoxalin-2-yl)pyridin-2-
yl)ethylidene)benzenamine (L5)
Using the same procedure as for the synthesis of L1,
L5 was obtained as yellow powder in 40% yield. Mp:
163–164 ꢂC. IR (KBr, cmÀ1): 1639 (s, mC@N), 1567, 1469,
1365, 998, 829, 766, 741, 406. 1H NMR (300 MHz, CDCl3,
d): 10.09 (s, 1H, o-quinoxalin-H), 8.74 (d, 1H, J = 7.8 Hz,
Py–H), 8.49 (d, 1H, J = 7.83 Hz, Py–H), 8.19 (m, 2H, qui-
noxalin-H), 8.03 (t, 1H, J = 7.83 Hz, Py–H), 7.82 (m, 2H,
quinoxalin-H), 7.01 (m, 3H, Ph–H ), 2.57 (s, 3H, N@C–
CH3). 13C NMR (75.45 MHz, CDCl3, d): 172.5, 155.3,
154.2, 153.4, 151.8, 149.8, 144.2, 142.6, 141.8, 137.7,
130.2, 130.2, 129.7, 129.4, 124.2, 123.4, 122.8, 111.8,
111.5, 17.7. Anal. Calc. for C21H14F2N4: N, 15.55; C,
69.99; H, 3.92. Found: N, 15.48; C, 69.52; H, 3.92%.