C O M M U N I C A T I O N S
Table 3. Arylation Scope with Respect to Heterocyclesa
KOtBu base; PhI) was obtained if CuI was omitted from the reaction
of Scheme 1.
In conclusion, a new method for the direct, copper-catalyzed
arylation of heterocycle C-H bonds by aryl halides has been
developed. In addition to electron-rich five-membered heterocycles,
electron-poor pyridine oxides can also be arylated. The best results
are obtained by using a combination of lithium t-butoxide base and
aryl iodide coupling partner. The generality and ready availability
of stating materials should make this method useful for organic
synthesis.
Acknowledgment. We thank the Welch Foundation (Grant No.
E-1571) and the National Institute of General Medical Sciences
(Grant No. R01GM077635) for supporting this research.
Supporting Information Available: Detailed experimental pro-
cedures and characterization data for new compounds. This material is
References
(1) (a) Dalvie, D. K.; Kalgutkar, A. S.; Khojasteh-Bakht, S. C.; Obach, R.
S.; O’Donnell, J. P. Chem. Res. Toxicol. 2002, 15, 269. (b) Alberico, D.;
Scott, M. E.; Lautens, M. Chem. ReV. 2007, 107, 174.
(2) (a) Akita, Y.; Inoue, A.; Yamamoto, K.; Ohta, A.; Kurihara, T.; Shimizu,
M. Heterocycles 1985, 23, 2327. (b) Park, C.-H.; Ryabova, V.; Seregin,
I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett. 2004, 6, 1159. (c) Yokooji,
A.; Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron 2003,
59, 5685. (d) Rieth, R. D.; Mankad, N. P.; Calimano, E.; Sadighi, J. P.
Org. Lett. 2004, 6, 3981. (e) Bellina, F.; Cauteruccio, S.; Mannina, L.;
Rossi, R.; Viel, S. J. Org. Chem. 2005, 70, 3997. (f) Deprez, N. R.;
Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128,
4972. (g) Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem.
Soc. 2002, 124, 5286. (h) Bellina, F.; Cauteruccio, S.; Rossi, R. Eur. J.
Org. Chem. 2006, 1379. (i) Bowie, A. L., Jr.; Hughes, C. C.; Trauner, D.
Org. Lett. 2005, 7, 5207. (j) Lewis, J. C.; Wu, J. Y.; Bergman, R. G.;
Ellman, J. A. Angew. Chem., Int. Ed. 2006, 45, 1589. (k) Chiong, H. A.;
Daugulis, O. Org. Lett. 2007, 9, 1449. (l) Lu, J.; Tan, X.; Chen, C. J. Am.
Chem. Soc. 2007, 129, 7768. (m) Stuart, D. R.; Fagnou, K. Science 2007,
316, 1172. (n) Wang, X.; Lane, B. S.; Sames, D. J. Am. Chem. Soc. 2005,
127, 4996. (o) Dwight, T. A.; Rue, N. R.; Charyk, D.; Josselyn, R.;
DeBoef, B. Org. Lett. 2007, 9, 3137. Review: (p) Seregin, I. V.;
Gevorgyan, V. Chem. Soc. ReV. 2007, 36, 1173.
a Substrate (1 equiv), iodobenzene (3 equiv), base (2 equiv). Yields are
isolated yields. b 2,5-Diphenyloxazole also isolated (7%). c 2-Phenylthiazole
d
also isolated (37%). KOtBu base. e LiOtBu/KOtBu base (1:1).
Scheme 1. Mechanistic Investigations
(3) Review: Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176.
(4) The following is the cost breakdown of a molar scale reaction run with 3
equiv of aryl halide and 5 mol % of palladium acetate or 10 mol % of
copper iodide catalyst. The cost of the palladium-catalyzed reaction is
$11 (chlorobenzene) + $403 (Pd(OAc)2). The cost of the copper-catalyzed
reaction is $150 (iodobenzene) + $3 (CuI; Aldrich prices). An expensive
ligand is usually used for palladium-catalyzed reactions.
(5) (a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem.
Soc. 2001, 123, 7727. (b) Allred, G. D.; Liebeskind, L. S. J. Am. Chem.
Soc. 1996, 118, 2748. (c) Thathagar, M. B.; Beckers, J.; Rothenberg, G.
J. Am. Chem. Soc. 2002, 124, 11858. (d) Ma, D.; Liu, F. Chem. Commun.
2004, 1934.
(6) Cu-catalyzed oxidation of C-H bonds in 2-phenylpyridines: (a) Chen,
X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128,
6790. (b) Uemura, T.; Imoto, S.; Chatani, N. Chem. Lett. 2006, 35, 842.
Cu-catalyzed reaction of indoles with tetrahydroisoquinolines: (c) Li, Z.;
Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968.
We have carried out preliminary mechanistic investigations of
the coupling process (Scheme 1). The arylation employing KOtBu
base is successful for aryl iodides, bromides, and chlorides, although
the yields are moderate. If 4,5-dimethylthiazole is reacted with
iodo- or bromobenzene-d5 using KOtBu as a base (Scheme 1A),
tetradeuterated product 1-1 is obtained. A single hydrogen is
introduced at the ortho position of the phenyl group. This
observation can be explained by assuming that the reaction proceeds
via a copper-assisted benzyne-type mechanism.9,10 No H-D
exchange is observed if pentadeuterated 1-2 is submitted to the
reaction conditions of Scheme 1A. If LiOtBu is used as a base,
hydrogen incorporation is not observed (Scheme 1B, 1-2).
Involvement of benzyne intermediate is unlikely in this case.
Presumably, heterocycle deprotonation by tert-butoxide (perhaps
assisted by copper precoordination to the heterocycle)2h followed
by lithium-copper transmetallation and reaction of the organo-
copper species with aryl iodide leads to the arylation product. No
product (LiOtBu base; PhI) or only a trace of the product (<2%;
(7) Heterocycle arylation under Pd, by Pd/Cu catalysis, or by using several
equivalents of Cu: Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.;
Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 467.
(8) Palladium-catalyzed pyridine oxide arylation: Campeau, L.-C.; Rousseaux,
S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 18020.
(9) Silver-benzyne complex reactions with arene nucleophiles: (a) Friedman,
L. J. Am. Chem. Soc. 1967, 89, 3071. Review about Cu-catalyzed
nucleophilic substitution: (b) Lindley, J. Tetrahedron 1984, 40, 1433.
Aryne substitution: (c) Pellissier, H.; Santelli, M. Tetrahedron 2003, 59,
701. Benzyne reactions with Pd species: (d) Liu, Z.; Larock, R. C. J.
Org. Chem. 2007, 72, 223.
(10) Arylation of 4,5-dimethylthiazole by p-tolyl bromide under conditions of
Scheme 1A affords a mixture of m-tolyl- and p-tolylderivatives. See
Supporting Information for details.
JA075802+
9
J. AM. CHEM. SOC. VOL. 129, NO. 41, 2007 12405