Alfonso et al.
contacts. Among others, hydrogen bonds implicating both the
π-cloud of aromatic systems and amide NH bonds have been
deeply studied in the past decade,2 as they are present in many
proteins3 and peptides4 and have been used for molecular
recognition in synthetic receptors.5 However, the use of these
noncovalent contacts for conformational control6 and the
development of model systems for studying the process7 have
been less exploited. The understanding of these noncovalent
interactions is of great importance, as there are some biological
processes that are closely related, such as protein binding to
specific ligands8 or the regulation of molecular recognition of
DNA.9
On the other hand, amino acid derived macrocyclic com-
pounds have recently attracted much attention in the fields of
synthetic,10 bioorganic,11 medicinal,12 and supramolecular chem-
istry.13 Their cyclic structure usually confers on them a three-
dimensional organization of the amino acid residues in a
preferred conformation,14 allowing them to host small molecules
and ions,15 with interesting potentials in molecular recognition
or in the design of new chemosensors.16 Thus, the conforma-
tionally well-defined disposition of functional groups make them
ideal probes for the study of noncovalent interactions in relation
to solvent exposure and folding properties and, consequently,
for designing model systems. Regarding that, we have recently
reported on the study of conformational properties of macro-
cyclic peptidomimetic cyclophanes containing a p-phenylene
unit.17 The energetic barrier for the rotation of the aromatic ring
with respect to the macrocyclic main plane showed a close
relationship with the intramolecular H-bond pattern and the
solvent accessibility to the pseudo-peptidic moiety. These
properties were exploited for the description of a methanol-
dependent molecular rotor, a simple device that was used as a
proof-of-concept simple model. Additionally, the effect of the
aromatic rings of the side chains was correlated to the ability
(10) (a) Gibson, S. E.; Lecci, C. Angew. Chem., Int. Ed. 2006, 45, 1364-
1377. (b) Billing, J. F.; Nilsson, U. J. J. Org. Chem. 2005, 70, 4847-4850.
(c) Punna, S.; Kuzelka, J.; Wang, Q.; Finn, M. G. Angew. Chem., Int. Ed.
2005, 44, 2215-2220. (d) Cristau, P.; Martin, M.-T.; Tran Hu Dau, M.-E.;
Vors, J.-P.; Zhu, J. Org. Lett. 2004, 6, 3183-3186. (e) Redman, J. E.;
Wilcoxen, K. M.; Ghadiri, M. R. J. Comb. Chem. 2003, 5, 33-40. (f)
Locardi, E.; Sto¨ckle, M.; Garner, S.; Kessler, H. J. Am. Chem. Soc. 2001,
123, 8189-8196. (g) Dietrich, B.; Viout, P.; Lehn, J.-M. Macrocyclic
Chemistry; Wiley: New York, 1993. (h) Parker, D. Macrocycle Synthesis:
A Practical Approach; Oxford University Press: New York, 1996. (i)
Vo¨gtle, F. Cyclophane Chemistry; Wiley: New York, 1993.
(11) (a) Horne, W. S.; Stout, C. D.; Ghadiri, M. R. J. Am. Chem. Soc.
2003, 125, 9372-9376. (b) Ferna´ndez-Lo´pez, S.; Kim, H.-S.; Choi, E. C.;
Delgado, M.; Granja, J. R.; Khasanov, A.; Kraehenbuehl, K.; Long, G.;
Weinberger, D. A.; Wilcoxen, K. M.; Ghadiri, M. R. Nature 2001, 412,
452-455.
(12) (a) Loughlin, W. A.; Tyndall, J. D. A.; Glenn, M. P.; Fairlie, D. P.
Chem. ReV. 2004, 104, 6085-6117. (b) Reid, R. C.; Pattenden, L. K.;
Tyndall, J. D. A.; Martin, J. L.; Walsh, T.; Fairlie, D. P. J. Med. Chem.
2004, 47, 1641-1651. (c) Reid, R. C.; Abbenante, G.; Taylor, S. M.; Fairlie,
D. P. J. Org. Chem. 2003, 68, 4464-4471. (d) Hu, X.; Nguyen, K. T.;
Verlinde, C. L. M. J.; Hol, W. G. J.; Pei, D. J. Med. Chem. 2003, 46, 3771-
3774. (e) Glenn, M. P.; Pattenden, L. K.; Reid, R. C.; Tyssen, D. P.; Tyndall,
J. D. A.; Birch, C. J.; Fairlie, D. P. J. Med. Chem. 2002, 45, 371-381.
(13) For some examples on related systems, see: (a) Choi, K.; Hamilton,
A. D. Coord. Chem. ReV. 2003, 240, 101-110. (b) Choi, K.; Hamilton, A.
D. J. Am. Chem. Soc. 2003, 125, 10241-10249. (c) Choi, K.; Hamilton,
A. D. J. Am. Chem. Soc. 2001, 123, 2456-2457. (d) Somogyi, L.;
Haberhauer, G.; Rebek, J., Jr. Tetrahedron 2001, 57, 1699-1708. (e) Conn,
M. M.; Rebek, J., Jr. Chem. ReV. 1997, 97, 1647-1668.
(14) (a) Bru, M.; Alfonso, I.; Burguete, M. I.; Luis, S. V. Tetrahedron
Lett. 2005, 46, 7781-7785. (b) Reyes, S. J.; Burgess, K. Tetrahedron:
Asymmetry 2005, 16, 1061-1069. (c) Singh, Y.; Stoermer, M. J.; Lucke,
A. J.; Guthrie, T.; Fairlie, D. P. J. Am. Chem. Soc. 2005, 127, 6563-6572.
(d) Velasco-Torrijos, T.; Murphy, P. V. Org. Lett. 2004, 6, 3961-3964.
(e) Mann, E.; Kessler, H. Org. Lett. 2003, 5, 4567-4570. (f) Singh, Y.;
Stoermer, M. J.; Lucke, A. J.; Glenn, M. P.; Fairlie, D. P. Org. Lett. 2002,
4, 3367-3370. (g) Sastry, T. V. R. S.; Banerji, B.; Kumar, S. K.; Kunwar,
A. C.; Das, J.; Nandy, J. P.; Iqbal, J. Tetrahedron Lett. 2002, 43, 7621-
7625. (h) Reid, R. C.; Kelso, M. J.; Scanlon, M. J.; Fairlie, D. P. J. Am.
Chem. Soc. 2002, 124, 5673-5683.
(2) (a) Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew. Chem.,
Int. Ed. 2003, 42, 1210-1250. (b) Ma, J. C.; Dougherty, D. A. Chem. ReV.
1997, 97, 1303-1324.
(3) (a) Steiner, T.; Koellner, G. J. Mol. Biol. 2001, 305, 535-557. (b)
Singh, J.; Thornton, J. M. J. Mol. Biol. 1990, 211, 595-615. (c) Burley, S.
K.; Petsko, G. A. AdV. Protein Chem. 1988, 39, 125-189. (d) Burley, S.
K.; Petsko, G. A. FEBS Lett. 1986, 203, 139-143.
(4) (a) Mahalakshmi, R.; Raghothama, S.; Balaram, P. J. Am. Chem.
Soc. 2006, 128, 1125-1138. (b) Harini, V. V.; Aravinda, S.; Rai, R.;
Shamala, N.; Balaram, P. Chem.sEur. J. 2005, 11, 3609. (c) Sengupta,
A.; Mahalakshmi, R.; Shamala, N.; Balaram, P. J. Peptide Res. 2005, 65,
113-129. (d) Chin, W.; Mons, M.; Dognon, J.-P.; Mirasol, R.; Chass, G.;
Dimicoli, I.; Piuzzi, F.; Butz, P.; Tardivel, B.; Compagnon, I.; von Helden,
G.; Meijer, G. J. Phys. Chem. A 2005, 109, 5281-5288. (e) Broda, M. A.;
Siodlak, D.; Rzeszotarska, B. J. Peptide Sci. 2005, 11, 235-244. (f) Toth,
G.; Kover, K. E.; Murphy, R. F.; Lovas, S. J. Phys. Chem. B 2004, 108,
9287-9296. (g) Casanovas, J.; Jime´nez, A. I.; Cativiela, C.; Pe´rez, J. J.;
Alema´n, C. J. Org. Chem. 2003, 68, 7088-7091. (h) Toth, G.; Watts, C.
R.; Murphy, R. F.; Lovas, S. Proteins: Struct., Funct., Genet. 2001, 43,
373-381. (i) Toth, G.; Murphy, R. F.; Lovas, S. Protein Eng. 2001, 14,
543-547. (j) Toth, G.; Murphy, R. F.; Lovas, S. J. Am. Chem. Soc. 2001,
123, 11782-11790. (k) Jime´nez, A. I.; Cativiela, C.; Go´mez-Catala´n, J.;
Pe´rez, J. J.; Aubry, A.; Par´ıs, M.; Marraud, M. J. Am. Chem. Soc. 2000,
122, 5811-5821. (l) Honda, M. S.; Kobayashi, N.; Munekata, E. J. Mol.
Biol. 2000, 295, 269-278. (m) Duan, G.; Smith, V. H.; Weaver, D. F. Int.
J. Quantum Chem. 2000, 80, 44-60. (n) Jime´nez, A. I.; Cativiela, C.; Aubry,
A.; Marraud, J. Am. Chem. Soc. 1998, 120, 9452-9459. (o) Crisma, M.;
Formaggio, F.; Valle, G.; Toniolo, C.; Saviano, M.; Iacovino, R.; Zaccaro,
L.; Benedetti, E. Biopolymers 1997, 42, 1-6. (p) van der Spoel, D.; van
Buuren, A. R.; Tieleman, P.; Berendsen, H. J. C. J. Biomol. NMR 1996, 8,
229-238.
(5) (a) Snowden, T. S.; Bisson, A. P.; Anslyn, E. V. J. Am. Chem. Soc.
1999, 121, 6324-6325. (b) Allott, C.; Adams, H.; Bernard, P. L., Jr.; Hunter,
C. A.; Rotger, C.; Thomas, J. A. Chem. Commun. 1998, 2449-2450. (c)
Bisson, A. P.; Lynch, V. M.; Monahan, M. C.; Anslyn, E. V. Angew. Chem.,
Int. Ed. 1997, 36, 2340-2342. (d) Adams, H.; Carver, F. J.; Hunter, C. A.;
Osborne, N. J. Chem. Commun. 1996, 2529-2530.
(6) (a) Casanovas, J.; Jime´nez, A. I.; Cativiela, C.; Pe´rez, J. J.; Alema´n,
C. J. Phys. Chem. B 2006, 110, 5762-5766. (b) Hunter, C. A.; Spitaleri,
A.; Tomas, S. Chem. Commun. 2005, 3691-3693.
(7) (a) Hughes, R. M.; Waters, M. L. J. Am. Chem. Soc. 2006, 128,
13586-13591. (b) Hughes, R. M.; Waters, M. L. J. Am. Chem. Soc. 2005,
127, 6518-6519. (c) Tatko, C. D.; Waters, M. L. J. Am. Chem. Soc. 2004,
126, 2028-2034. (d) Biot, C.; Buisine, E.; Rooman, M. J. Am. Chem. Soc.
2003, 125, 13988-13994. (e) Tatko, C. D.; Waters, M. L. Protein Sci.
2003, 12, 2443-2452. (f) Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami,
M.; Tanabe, K. J. Am. Chem. Soc. 2000, 122, 11450-11458.
(8) (a) Perutz, M. F. Philos. Trans. Phys. Sci. Eng. 1993, 345, 105-
112. (b) Perutz, M. F.; Fermi, G.; Abraham, D. J.; Poyart, C.; Bursaux, E.
J. Am. Chem. Soc. 1986, 108, 1064-1078.
(15) (a) Bru, M.; Alfonso, I.; Burguete, M. I.; Luis, S. V. Angew. Chem.,
Int. Ed. 2006, 45, 6155-6159. (b) Heinrichs, G.; Kubic, S.; Lacour, J.;
Vial, L. J. Org. Chem. 2005, 70, 4498-4501. (c) Otto, S.; Kubik, S. J.
Am. Chem. Soc. 2003, 125, 7804-7805. (d) Heinrichs, G.; Vial, L.; Lacour,
J.; Kubic, S. Chem. Commun. 2003, 1252-1253. (e) Kubic, S.; Kirchner,
R.; Nolting, D.; Seidel, J. J. Am. Chem. Soc. 2002, 124, 12752-12760. (f)
Bitta, J.; Kubik, S. Org. Lett. 2001, 3, 2637-2640. (g) Kubik, S.; Goddard,
R.; Kirchner, R.; Nolting, D.; Seidel, J. Angew. Chem., Int. Ed. 2001, 40,
2648-2651. (h) Pohl, S.; Goddard, R.; Kubik, S. Tetrahedron Lett. 2001,
42, 7555-7558. (i) Ishida, H.; Inoue, Y. Biopolymers 2000, 55, 469-478.
(16) (a) Galindo, F.; Burguete, M. I.; Vigara, L.; Luis, S. V.; Russell,
D. A.; Kabir, N.; Gavrilovic, J. Angew. Chem., Int. Ed. 2005, 44, 6504-
6508. (b) Galindo, F.; Burguete, M. I.; Luis, S. V. Chem. Phys. 2004, 302,
287-294. (c) Becerril, J.; Burguete, M. I.; Escuder, B.; Galindo, F.; Gavara,
R.; Miravet, J. F.; Luis, S. V.; Peris, G. Chem.sEur. J. 2004, 10, 3879-
3890. (d) Galindo, F.; Becerril, J.; Burguete, M. I.; Luis, S. V.; Vigara, L.
Tetrahedron Lett. 2004, 45, 1659-1662.
(9) (a) Biot, C.; Buisine, E.; Rooman, M. J. Am. Chem. Soc. 2003, 125,
13988-13994. (b) Owen, D. J.; Ornaghi, P.; Yang, J. C.; Lowe, N.; Evans,
P. R.; Ballario, P.; Neuhaus, D.; Filetici, P.; Travers, A. A. EMBO J. 2000,
19, 6141-6149. (c) Dhalluin, C.; Carlson, J. E.; Zeng, L.; He, C.; Aggarwal,
A.; Zhou, M. Nature 1999, 399, 491-496.
(17) Alfonso, I.; Burguete, M. I.; Luis, S. V. J. Org. Chem. 2006, 71,
2242-2250.
7948 J. Org. Chem., Vol. 72, No. 21, 2007