Organometallics 2007, 26, 5339-5345
5339
Single-Component r-Iminocarboxamide Nickel Ethylene
Polymerization and Copolymerization Initiators
Rene S. Rojas,† Griselda Barrera Galland,‡ Guang Wu,§ and Guillermo C. Bazan*,§
Departamento de Qu´ımica Inorga´nica, Facultad de Qu´ımica, Pontificia UniVersidad Cato´lica de Chile,
Santiago, Chile, Instituto de Qu´ımica da UFRGS, AVenida Bento Gonc¸alVes, 9500-CEP 91501-970, Brazil,
and Mitsubishi Chemical Center for AdVanced Materials, Institute for Polymer and Organic Solids,
Departments of Chemistry and Materials, UniVersity of California, Santa Barbara, California 93106
ReceiVed February 20, 2007
The reaction of Ni(COD)2, benzyl chloride, potassium N-(2,6-diisopropylphenyl)-2-(2,6-diisopropy-
lphenylimino)propanamidate, and pyridine or 2,6-lutidine yields N,O-bound R-iminocarboxamide
complexes that can be used as single-component initiators for the homopolymerization of ethylene or the
copolymerization of ethylene with functionalized norbornene monomers. Comparison of the Py versus
2,6-lutidine complexes highlights how the nitrogen ligand lability influences polymerization activity. It
is also possible to synthesize η1-CH2COPh complexes via these procedures, which are less stable to the
presence of monomer functionalities.
polyethylene from ethylene alone.5 Additionally, upon activation
with Ni(COD)2, these complexes provide sites that show quasi-
living characteristics for the polymerization of ethylene with
5-norbornen-2-yl-acetate (NBA).6 Significantly, activation with
Ni(COD)2 occurs only in the presence of ethylene. This feature
of the reaction allows for the synthesis of tapered, or gradient,
copolymer structures, although the mechanistic details of how
the Ni(COD)2/ethylene mixture activates the R-iminocarboxa-
mide complex remain uncertain at this stage. Structure-
reactivity relationship studies have shown that only N,O-bound
species (see Scheme 1) are useful in quasi-living polymeriza-
tions; negligible reactivity is seen with N,N-isomers under
Introduction
Interest in late transition metal initiators for the copolymer-
ization of ethylene with functionalized monomers stems from
the opportunity to access new commodity plastics and specialty
materials with unique properties.1 The ultimate utility of such
initiators is determined in part by whether preparative methods
are amenable for scale-up and incorporation into large-scale
manufacturing processes and by the potential applications and
cost of the resulting materials. Despite substantial progress in
the control of coactivator species,2 single-component systems
should provide better control over the polymerization reaction
conditions.3 Initiators that incorporate functionalities, are single
component, and provide living polymerization characteristics
are relatively rare and provide optimum control over polymer
chain composition and architecture.4
(3) (a) Zhang, D.; Jin, G.-X.; Hu, N. Chem. Commun. 2002, 574. (b)
Hu, T.; Tang, L.-M.; Li, X.-F.; Li, Y.-S.; Hu, N.-H. Organometallics 2005,
24, 2628. (c) Albers, I.; Alvarez, E.; Campora, J.; Maya, C. M.; Palma, P.;
Sanchez, L. J.; Passaglia, E. J. Organomet. Chem. 2004, 689, 833. (d)
Heinicke, J.; Peulecke, N.; Kindermann, M. K.; Jones, P. G. Z. Anorg. Allg.
Chem. 2005, 631, 67. (e) Desjardins, S. Y.; Cavell, K. J.; Jin, H.; Skelton,
B. W.; White, A. H. J. Organomet. Chem. 1996, 515, 233. (f) Ketz, B. E.;
Ottenwaelder, X. G.; Waymouth, R. M. Chem. Commun. 2005, 5693. (g)
Heinicke, J.; Ko¨hler, M.; Peulecke, N.; Kindermann, M. K.; Keim, W.;
Ko¨ckerling, M. Organometallics 2005, 24, 344. (h) Zuideveld, M. A.;
Wehrmann, P.; Ro¨hr, C.; Mecking, S. Angew. Chem. Int. Ed. 2004, 43,
869. (i) Schro¨der, D. L.; Keim, W.; Zuideveld, M. A.; Mecking, S.
Macromolecules 2002, 35, 6071. (j) Wang, C.; Friedrich, S.; Younkin, T.
R.; Li, R. T.; Grubbs, R. H.; Bansleben, D. A.; Day, M. W. Organometallics
1998, 17, 3149. (k) Connor, E. F.; Younkin, T. R.; Henderson, J. I.;
Waltman, A. W.; Grubbs, R. H. Chem. Commun. 2003, 2272.
(4) (a) Younkin, T. R.; Conor, E. F.; Henderson, J. I.; Friedrich, S. K.;
Grubbs R. H.; Bansleben, D. A. Science 2000, 287, 460. (b) Connor, E. F.;
Younkin, T. R.; Henderson, J. I.; Hwang, S.; Grubbs, R. H.; Roberts, W.
P.; Litzau, J. J. J. Polym. Sci.: Part A: Polym. Chem. 2002, 40, 2842. (c)
Benedikt, G. M.; Elce, E.; Goodall, B. L.; Kalamarides, H. A.; McIntosh,
L. H.; Rhodes, L. F.; Selvy, K. T.; Andes, C.; Oyler, K.; Sen, A.
Macromolecules 2002, 35, 8978. (d) Yasuda, H.; Desurmont, G. Polym.
Int. 2004, 53, 1017. (e) Desjardins, S. Y.; Cavell, K. J.; Hoare, J. L.; Skelton,
B. W.; Sobolev, A. N.; White, A. H. Keim, W. J. Organomet. Chem. 1997,
544, 163. (f) Sachez-Barba, L. F.; Hughes, D. L.; Humphrey, S. M.;
Bochmann, M. Organometallics 2005, 24, 3792.
R-Iminocarboxamide-Ni(η1-CH2Ph)(PMe3) complexes have
been used for concurrent tandem polymerization of branched
* Corresponding author. Fax: +1 805 893 4120. Tel: +1 805 893 5538.
E-mail: bazan@chem.ucsb.edu.
† Pontificia Universidad Cato´lica de Chile.
‡ Instituto de Qu´ımica da UFRGS.
§ University of California.
(1) (a) Rieger, B.; Baugh, L.; Striegler, S.; Kacker, S. Late Transition
Metal Polymerization Catalysis; John Wiley & Sons: New York, 2003.
(b) Blom, R.; Follestad, A.; Rytter, E.; Tilset, M.; Ystenes, M. Organo-
metallic Catalysts and Olefin Polymerization: Catalysts for a New
Millennium; Springer-Verlag: Berlin, Germany, 2001. (c) Galli, P.; Vecellio,
G. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 396. (d) Keim, W.;
Kowalt, F. H.; Goddard, R.; Kruger, C. Angew. Chem., Int. Ed. Engl. 1978,
17, 466. (e) Bonnet, M. C.; Dahan, F.; Ecke, A.; Keim, W.; Schultz, R. P.;
Tkatchenko, I. Chem. Commun. 1994, 615. For recent reviews see: (f) Ittel,
S. D.; Johnson, L. K.; Brookhart, M. Chem. ReV. 2000, 100, 1169. (g) Boffa,
L. S.; Novak, B. M. Chem. ReV. 2000, 100, 1479. (h) Yanjarappa, M. J.;
Sivaram, S. Prog. Polym. Sci. 2002, 27, 1347. (i) Mecking, S.; Held, A.;
Bauers, F. M. Angew. Chem., Int. Ed. 2002, 41, 544. (j) Gibson, V. C.;
Spitzmesser, S. K. Chem. ReV. 2003, 103, 283. (k) Mecking, S. Coord.
Chem. ReV. 2000, 203, 325.
(2) (a) Yang, Q.-Z.; Kermagoret, A.; Agostinho, M.; Siri, O.; Braunstein,
P. Organometallics 2006, 25 (23), 5518. (b) Zhang, L.; Brookhart, M.;
White, P. S. Organometallics 2006, 25 (8), 1868. (c) Scha¨tz, A.; Scarel,
A.; Zangrando, E.; Mosca, L.; Carfagna, C.; Gissibl, A.; Milani, B.; Reiser,
O. Organometallics 2006, 25 (17), 4065. (d) Yamashita, M.; Takamiya, I.;
Jin, K.; Nozaki, K. Organometallics 2006, 25 (19), 4588. (e) Benito, J. M.;
de Jesu´s, E.; de la Mata, F. J.; Flores, J. C.; Go´mez, R. Organometallics
2006, 25 (12), 3045. (f) Strauch, J. W.; Erker, G.; Kehr, G.; Fro¨hlich, R.
Angew. Chem. Int. Ed. 2002, 41, 2543.
(5) (a) Bazan, G. C.; Rodriguez, G.; Ashe, A. J., III; Al-Ahmad, S.;
Mu¨ller, C. J. Am. Chem. Soc. 1996, 118, 2291. (b) Barnhart, R. W.; Bazan,
G. C.; Mourey, T. J. Am. Chem. Soc. 1998, 120, 1082. (c) Komon, Z. J.
A.;. Diamond, G. M.; Leclerc, M. K.; Murphy, V.; Okazaki, M.; Bazan, G.
C. J. Am. Chem. Soc. 2002, 124, 15280. (d) Wasilke, J. C.; Obrey, S. J.;
Baker, R. T.; Bazan, G. C. Chem. ReV. 2005, 105, 1001.
(6) (a) Diamanti, S. J.; Ghosh, P.; Shimizu, F.; Bazan, G. C. Macro-
molecules 2003, 36, 9731. (b) Diamanti, S. J.; Khanna, V.; Hotta, A.;
Yamakawa, D.; Shimizu, F.; Kramer, E. J.; Fredrickson, G. H.; Bazan, G.
C. J. Am. Chem. Soc. 2004, 126, 10528.
10.1021/om070155g CCC: $37.00 © 2007 American Chemical Society
Publication on Web 09/27/2007