C O M M U N I C A T I O N S
Table 2. Properties of RNase A Variants
by an ACS Division of Organic Chemistry Fellowship, sponsored
by Abbott Laboratories. U.A. was supported by Grant 3537C/0903T
(Land Saxony-Anhalt). NMRFAM was supported by Grant
P41RR02301 (NIH).
Tm
C)b
kcat/KM
1
c
residues 113
−114
origina
(
°
(107 M-1 s-
)
Asn-Pro (16)
bovine pancreas 64.0 ( 0.1
5.7
5.0
6.1
4.5
4.2
5.6
Asn-1,5-triazole-Ala (17) semisynthesis
Asn-1,4-triazole-Ala (18) semisynthesis
60.4 ( 0.2
54.3 ( 0.1
Supporting Information Available: Procedures for the preparation
of all novel compounds and related analytical data, including a crystal
structure of triazole 12. This material is available free of charge via
Ala-Pro (19)
Escherichia coli 61.2 ( 0.2
Ala-1,5-triazole-Ala (20) semisynthesis
Ala-1,4-triazole-Ala (21) semisynthesis
60.8 ( 0.2
54.6 ( 0.2
a All variants except 16 contain an N-terminal methionine residue.
b Values were determined by CD spectroscopy in 50 mM sodium phosphate
buffer (pH 8.0) containing NaCl (25 mM) and protein (0.5-1.0 mg/mL).
c Values were determined at 25 °C in 0.10 M MES-NaOH buffer (pH 6.0)
containing NaCl (0.10 M). Experimental error was ∼10%.
References
(1) For a review, see: Che, Y.; Marshall, G. R. Biopolymers 2006, 81, 392-
406.
(2) (a) Brandts, J. F.; Halvorson, H. R.; Brennan, M. Biochemistry 1975, 14,
4953-4963. (b) Levitt, M. J. Mol. Biol. 1981, 145, 251-263.
(3) (a) MacArthur, M. W.; Thornton, J. M. J. Mol. Biol. 1991, 218, 397-
412. (b) Reiersen, H.; Rees, A. R. Trends Biochem. Sci. 2001, 26, 679-
684.
(4) (a) Brazin, K. N.; Mallis, R. J.; Fulton, D. B.; Andreotti, A. H. Proc.
Natl. Acad. Sci. U.S.A. 2002, 99, 1899-1904. (b) Sarkar, P.; Reichman,
C.; Saleh, T.; Birge, R. B.; Kalodimos, C. G. Mol. Cell 2007, 25, 413-
426.
(5) For examples, see: (a) Zabrocki, J.; Smith, G. D.; Dunbar, J. B.; Iijima,
H.; Marshall, G. R. J. Am. Chem. Soc. 1988, 110, 5875-5880. (b) Lenman,
M. M.; Ingham, S. L.; Gani, D. Chem. Commun. 1996, 85-87. (c) Abell,
A. D.; Foulds, G. J. J. Chem. Soc., Perkin Trans. 1 1997, 2475-2482.
(d) Hitotsuyanagi, Y.; Motegi, S.; Fukaya, H.; Takeya, K. J. Org. Chem.
2002, 67, 3266-3271. (e) Grison, C.; Coutrot, P.; Geneve, S.; Didierjean,
C.; Marraud, M. J. Org. Chem. 2005, 70, 10753-10764. (f) Sasaki, Y.;
Niida, A.; Tsuji, T.; Shigenaga, A.; Fujii, N.; Otaka, A. J. Org. Chem.
2006, 71, 4969-4979.
(6) Arnold, U.; Hinderaker, M. P.; Nilsson, B. L.; Huck, B. R.; Gellman, S.
H.; Raines, R. T. J. Am. Chem. Soc. 2002, 124, 8522-8523.
(7) Angell, Y.; Burgess, K. J. Org. Chem. 2005, 70, 9595-9598.
(8) (a) Franke, R.; Doll, C.; Eichler, J. Tetrahedron Lett. 2005, 46, 4479-
4482. (b) Oh, K.; Guan, Z. B. Chem. Commun. 2006, 3069-3071.
(9) For additional examples, see: (a) Zhang, Z. S.; Fan, E. Tetrahedron Lett.
2006, 47, 665-669. (b) Bock, V. D.; Perciaccante, R.; Jansen, T. P.;
Hiemstra, H.; van Maarseveen, J. H. Org. Lett. 2006, 8, 919-922. (c)
Paul, A.; Bittermann, H.; Gmeiner, P. Tetrahedron 2006, 62, 8919-8927.
(d) Ku¨min, M.; Sonntag, L. S.; Wennemers, H. J. Am. Chem. Soc. 2007,
129, 466-467.
(10) Pokorski, J. K.; Miller, Jenkins, L. M.; Feng, H.; Durell, S. R.; Bai, Y.;
Appella, D. H. Org. Lett. 2007, 9, 2381-2383.
(11) (a) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565-598. (b) Bra¨se,
S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005,
44, 5188-5240. (c) Lutz, J.-F. Angew. Chem., Int. Ed. 2007, 46, 1018-
1025. (d) Moses, J. E.; Moorhouse, A. D. Chem. Soc. ReV. 2007, 36,
1249-1262.
trityl group on the asparagine side chain (entry 3). It is noteworthy
that this chemistry is compatible with Boc- and Fmoc-protecting
group strategies (entries 6 and 7), both of which are common in
solid-phase peptide synthesis. Moreover, subjecting the resulting
triazoles to the conditions of peptide synthesis (e.g., 20% v/v
piperidine in DMF) produced no epimerization detectable by NMR
spectroscopy.
Next, we used expressed protein ligation21 to replace Asn113-
Pro114 of RNase A with Asn-1,5-triazole-Ala. To probe the
generality of our approach, we also replaced the analogous turn in
the N113A variant of RNase A with Ala-1,5-triazole-Ala. In
addition, we incorporated Asn-1,4-triazole-Ala and Ala-1,4-triazole-
Ala into RNase A. To do so, the four triazole surrogates were
incorporated into peptides corresponding to residues 95-124 by
solid-phase peptide synthesis. RNase A fragment 1-94 with a
C-terminal thioester was produced with recombinant DNA meth-
ods.6,22 After ligation of the two fragments, the semisynthetic
enzymes were folded and purified, and their properties were
compared to those of the analogous biosynthetic enzymes.
Enzymatic catalysis can report on protein tertiary structure.23 All
of the semisynthetic proteins retained full catalytic activity (Table
2). The maintenance of native secondary structure was likewise
supported by circular dichroism spectroscopy.24 The 1,5-triazole
variants 17 and 20 have Tm values comparable to those of the wild-
type enzyme (16) and its N113A variant (19), respectively. The
slight decrease in the Tm value of the 1,5-triazole variants could be
due to relief of the constraint imposed upon the æ dihedral angle
by the pyrrolidine ring of Pro114. The 1,5-regioisomers (17 and
20) are superior to the 1,4-regioisomers (18 and 21) in mimicking
the cis-prolyl bond, as indicated by the lower Tm values for the
latter pair.
(12) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew.
Chem., Int. Ed. 2002, 41, 2596-2599. (b) Tornoe, C. W.; Christensen,
C.; Meldal, M. J. Org. Chem. 2002, 67, 3057-3064.
(13) Krasinski, A.; Fokin, V. V.; Sharpless, K. B. Org. Lett. 2004, 6, 1237-
1240.
(14) (a) Hlasta, D. J.; Ackerman, J. H. J. Org. Chem. 1994, 59, 6184-6189.
(b) Coats, S. J.; Link, J. S.; Gauthier, D.; Hlasta, D. J. Org. Lett. 2005, 7,
1469-1472.
(15) (a) Zhang, L.; Chen, X. G.; Xue, P.; Sun, H. H. Y.; Williams, I. D.;
Sharpless, K. B.; Fokin, V. V.; Jia, G. C. J. Am. Chem. Soc. 2005, 127,
15998-15999. (b) Majireck, M. M.; Weinreb, S. M. J. Org. Chem. 2006,
71, 8680-8683.
(16) For a review, see: Raines, R. T. Chem. ReV. 1998, 98, 1045-1066.
(17) Lundquist, J. T.; Pelletier, J. C. Org. Lett. 2001, 3, 781-783.
(18) (a) Roth, G. J.; Liepold, B.; Muller, S. G.; Bestmann, H. J. Synthesis-
Stuttgart 2004, 59-62. (b) Dickson, H. D.; Smith, S. C.; Hinkle, K. W.
Tetrahedron Lett. 2004, 45, 5597-5599.
(19) Certain amino acids are prone to epimerization (Romoff, T. T.; Goodman,
M. J. J. Pept. Res. 1997, 49, 281-292). Although the conversion of
aldehydes into alkynes was done under mild conditions, a slight erosion
of stereochemical integrity was observed by chiral HPLC: asparagine
alkyne 4 had 88% ee; phenylalanine alkyne 6 had 98% ee. After
cycloaddition, the desired diastereomer was isolated by flash chromatog-
raphy.
The triazole-Ala surrogates eliminate an uncertainty in protein
design. The trans/cis ratio of an Xaa-Pro peptide bond depends
on the nature of Xaa. The higher Tm value of wild-type RNase A
compared to its N114A variant is likely due in part to the greater
propensity of Asn-Pro than Ala-Pro peptide bonds to assume a
cis conformation.25 In contrast, the Tm values of the semisynthetic
proteins are independent of the Xaa residue. This distinction arises
because cis-trans isomerization is not a factor with the two Xaa-
triazole-Ala surrogates.
We conclude that Xaa-1,5-triazole-Ala modules can serve as
viable mimics of Xaa-cis-Pro segments in a protein. The possibility
of synthesizing this surrogate by the ligation of fragments in situ8
and the emergence of biocompatible catalysts for that process15,20
portends its widespread use.
(20) Boren, B.; Narayan, S.; Rasmussen, L. K.; Jia, G.; Fokin, V. V. Presented
at the 232nd National Meeting of the American Chemical Society, San
Francisco, CA, September 2006; Paper ORGN 365.
(21) For a review, see: Muir, T. W. Annu. ReV. Biochem. 2003, 72, 249-
289.
(22) Arnold, U.; Hinderaker, M. P.; Ko¨ditz, J.; Golbik, R.; Ulbrich-Hofmann,
R.; Raines, R. T. J. Am. Chem. Soc. 2003, 125, 7500-7501.
(23) Knowles, J. R. Science 1987, 236, 1252-1258.
Acknowledgment. We thank I. A. Guzei for X-ray crystal-
lography, S. D. Burke for access to chiral HPLC, and E. L. Myers
for contributive discussions. This work was supported by Grants
GM44783 (NIH) and INT 0129163 (NSF). M.B.S. was supported
(24) See Supporting Information.
(25) Reimer, U.; Scherer, G.; Drewello, M.; Kruber, S.; Schutkowski, M.;
Fischer, G. J. Mol. Biol. 1998, 279, 449-460.
JA075865S
9
J. AM. CHEM. SOC. VOL. 129, NO. 42, 2007 12671