Communications
Scheme 4. Completion of the total synthesis of 2: a) 1) BCl3, CH2Cl2, 08C; 2) MOMCl, iPr2NEt, CH2Cl2, 08C; b) NaOMe, MeOH, reflux;
c) 1) PhICl2, Pb(SCN)2, CH2Cl2, RT; 2) PhLi, THF, ꢁ788C; d) 1) ClCO2Me, iPr2NEt, CH2Cl2, 08C; 2) MCPBA, CH2Cl2, ꢁ78!ꢁ58C; e) 1) methyl
trimethylsilyl dimethylketene acetal, MeCN, RT; 2) 8b, Tf2O, 2,4,6-collidine, MeCN, ꢁ788C; f) 1) iPr2NH, MeCN, RT; 2) MCPBA, CH2Cl2, ꢁ78!
ꢁ208C; g) 1) TFAA, CH2Cl2, 08C; 2) TFA, CH2Cl2, 08C; h) MOMCl, iPr2NEt, CH2Cl2, 08C; i) Na2S2O4, Me2SO4, K2CO3, acetone, reflux; j) TFA,
CH2Cl2, 08C; k) [Co(salen)2], O2, DMF, RT; l) 10% KOH, MeOH, RT; m) (triphenylphosphoranylidene)acetonitrile, EDCI, DMAP, CH2Cl2, RT;
n) dimethyldioxirane, MeOH, 08C; o) BBr3, CH2Cl2, ꢁ78!08C. DMAP=4-(dimethylamino)pyridine, DMF=N,N-dimethylformamide,
EDCI=N-ethyl-N’-(3-(dimethylamino)propyl)carbodiimide hydrochloride, MOM=methoxymethyl.
and the MOM group was removed to give 23. The [Co-
(salen)2]-catalyzed oxidation[13a] of the A ring of 23 gave the
[1] a) H. Brockmann, W. Lenk, G. Schwantje, A. Zeeck, Chem. Ber.
quinone 24; however, subsequent hydrolysis of the ester
group of the a-arylacetate moiety caused decomposition.
[2] M. E. Goldman, G. S. Salituro, J. A. Bowen, J. M. Williamson,
When the hydrolysis step (23!25) was carried out prior to
D. L. Zink, W. A. Schleif, E. A. Emini, Mol. Pharmacol. 1990,
the oxidation, 26 was obtained in 79% overall yield. The
method of Wong et al.[27] was used to transform the carboxylic
acid moiety into the a-keto ester 28. Thus, the condensation
of 26 with (triphenylphosphoranylidene)acetonitrile gave 27,
which was oxidized by dimethyldioxirane. The intermediate
28 underwent immediate cyclization to produce the lactone
29. Final deprotection by BBr3 delivered 2, which was
identical to authentic natural g-rubromycin by direct compar-
ison (1H NMR, IR, TLC; Scheme 4).
38, 20 – 25.
[3] T. Ueno, H. Takahashi, M. Oda, M. Mizunuma, A. Yokoyama, Y.
[4] a) M. Chino, K. Nishikawa, M. Umekita, C. Hayashi, T.
Yamazaki, T. Tsuchida, T. Sawa, M. Hamada, T. Takeuchi, J.
Antibiot. 1996, 49, 752 – 757; b) M. Chino, K. Nishikawa, T.
Tsuchida, R. Sawa, H. Nakamura, K. T. Nakamura, Y. Muraoka,
D. Ikeda, H. Naganawa, T. Sawa, T. Takeuchi, J. Antibiot. 1997,
50, 143 – 146.
In conclusion, we have completed the total synthesis of
racemic 2 by the successful application of two kinds of
aromatic Pummerer-type reactions of sulfinyl naphthol deriv-
atives. The first enabled the novel one-step construction of the
bisbenzannelated spiroketal unit, and the second involved the
unique rearrangement of a “bent” pentacyclic ketal to a
linearly fused pentacyclic ketal with the concurrent formation
of the B-ring paraquinone. This methodology offers conven-
ient access to a wide range of substituted bisbenzannelated
spiroketals from naphthol derivatives 7 and 2-methylenechro-
man derivatives 8 and has potential for use in the develop-
ment of new drugs derived from natural products that contain
bisbenzannelated spiroketal structures.
[5] M. Chino, K. Nishikawa, A. Yamada, M. Ohsono, T. Sawa, F.
Hanaoka, M. Ishizuka, T. Takeuchi, J. Antibiot. 1998, 51, 480 –
486.
[6] a) C. Coronelli, H. Pagani, M. R. Bardone, G. C. Lancini, J.
Antibiot. 1974, 27, 161 – 168; b) M. R. Bardone, E. Martinelli,
[7] A. Trani, C. Dallanoce, G. Panzone, F. Ripamonti, B. P. Gold-
[8] For a review on the rubromycins, see: M. Brasholz, S. Sörgel, C.
[9] a) D. Qin, R. X. Ren, T. Siu, C. Zheng, S. J. Danishefsky, Angew.
Sörgel, C. Azap, H.-U. Reissig, Org. Lett. 2006, 8, 4875 – 4878.
Received: June 1, 2007
Published online: August 14, 2007
Keywords: natural products · Pummerer reaction ·
.
rearrangement · spiroketals · total synthesis
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 7458 –7461