Organic Letters
Letter
(5) (a) Kuethe, J. T.; Comins, D. L. Org. Lett. 1999, 1, 1031−1033.
(b) Kuethe, J. T.; Comins, D. L. J. Org. Chem. 2004, 69, 5219−5231.
(c) Kuethe, J. T.; Comins, D. L. Org. Lett. 2000, 2, 855−857.
(6) Comins, D. L.; LaMunyon, D. H. J. Org. Chem. 1992, 57, 5807−
5809.
(7) Jansen, D. J.; Shenvi, R. A. J. Am. Chem. Soc. 2013, 135, 1209−1212.
(8) Korotkov, A.; Li, H.; Chapman, C. W.; Xue, H.; MacMillan, J. B.;
Eastman, A.; Wu, J. Angew. Chem., Int. Ed. 2015, 54, 10604−10607.
(9) For a recent review and example of a diastereoselective vinylogous
Mukaiyama−Michael reaction, see: (a) Schneider, C.; Abels, F. Org.
Biomol. Chem. 2014, 12, 3531−3543. (b) Basu, S.; Gupta, V.; Nickel, J.;
Schneider, C. Org. Lett. 2014, 16, 274−277. (c) Gupta, V.; Sudhir, S.;
Mandal, T.; Schneider, C. Angew. Chem., Int. Ed. 2012, 51, 12609−
12612. (d) Gu, Y.; Wang, Y.; Yu, T.; Liang, Y.; Xu, P. Angew. Chem., Int.
Ed. 2014, 53, 14128−14131. (e) Scettri, A.; Sio, V.; Villano, R.; Manzo,
P.; Acocella, M. R. Tetrahedron Lett. 2010, 51, 3658−3661.
lactam formation to give 15 and 16, respectively, which are easily
separable using silica gel chromatography. The conversion of
quinolizidine 15 to lasubine I through LAH reduction,19 and 16
to lasubine II, has been previously reported.20
In conclusion, we have developed In(III)-catalyzed stereo-
selective vM−Michael reactions with 2,3-dihydro-4-pyridinones,
which provide diversified synthetic approaches to access
quinolizidine alkaloids. We have also demonstrated the first
use of the supersilyl group to govern the γ-vs-α regiochemical
outcome of vM−Michael reactions. This “supersilyl” strategy
may be extended to analogous processes in which γ-substituted
silyl vinylketene acetals are utilized.
ASSOCIATED CONTENT
* Supporting Information
■
S
́
(f) Casamitjana, H.; Jorge, A.; Perez, C. G.; Bosch, J.; Espinosa, E.;
Molins, E. Tetrahedron Lett. 1997, 38, 2295−2298. (g) Chan, T. H.;
Prasad, C. V. C. J. Org. Chem. 1987, 52, 110−119.
The Supporting Information is available free of charge on the
(10) (a) Boxer, M. B.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 48−
49. (b) Boxer, M. B.; Yamamoto, H. J. Am. Chem. Soc. 2007, 129, 2762−
2763. (c) Kawasaki, M.; Li, P.; Yamamoto, H. Angew. Chem., Int. Ed.
2008, 47, 3795−3797. (d) Boxer, M. B.; Yamamoto, H. J. Am. Chem. Soc.
2007, 129, 2762−2763. (e) Yamaoka, Y.; Yamamoto, H. J. Am. Chem.
Soc. 2010, 132, 5354−5356. (f) Albert, B. J.; Yamamoto, H. Angew.
Chem., Int. Ed. 2010, 49, 2747−2749. (g) Saadi, J.; Akakura, M.;
Yamamoto, H. J. Am. Chem. Soc. 2011, 133, 14248−14251. (h) Albert, B.
J.; Yamaoka, Y.; Yamamoto, H. Angew. Chem., Int. Ed. 2011, 50, 2610−
2612. (i) Brady, P. B.; Yamamoto, H. Angew. Chem., Int. Ed. 2012, 51,
1942−1946. (j) Tan, J.; Akakura, M.; Yamamoto, H. Angew. Chem., Int.
Ed. 2013, 52, 7198−7202. (k) Izumiseki, A.; Yamamoto, H. J. Am. Chem.
Soc. 2014, 136, 1308−1311. (l) Izumiseki, A.; Yamamoto, H. Angew.
Chem., Int. Ed. 2015, 54, 8697−8699.
Experimental details and characterization of all new
compounds, including 1H, 13C, and selected 2D-NOESY,
2D-COSY, HMBC, and HMQC data (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(11)
J.W. was supported, in part, by a Research Scholar Grant (RSG-
13-011-01-CDD) from the American Cancer Society.
REFERENCES
■
(1) For selected references, see: (a) Comins, D. L.; Zhang, Y. J. Am.
Chem. Soc. 1996, 118, 12248−12249. (b) Kuethe, J. T.; Comins, D. L.
Org. Lett. 2000, 2, 855−857. (c) Comins, D. L.; Huang, S.; McArdle, C.
L.; Ingalls, C. L. Org. Lett. 2001, 3, 469−471. (d) Comins, D. L.; Zheng,
X.; Goehring, R. R. Org. Lett. 2002, 4, 1611−1613. (e) Comins, D. L.;
Sahn, J. J. Org. Lett. 2005, 7, 5227−5228. (f) Wolfe, B. H.; Libby, A. H.;
Al-awar, R. S.; Foti, C. J.; Comins, D. L. J. Org. Chem. 2010, 75, 8564−
8570. (g) Tsukanov, S. V.; Comins, D. L. Angew. Chem., Int. Ed. 2011, 50,
8626−8628. (h) Tsukanov, S. V.; Comins, D. L. J. Org. Chem. 2014, 79,
9074−9085.
(2) For selected references, see: (a) Shintani, R.; Tokunaga, N.; Doi,
H.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 6240−6241. (b) Gini, F.;
Hessen, B.; Minnaard, A. J. Org. Lett. 2005, 7, 5309−5312. (c) Xu, Q.;
Zhang, R.; Zhang, T.; Shi, M. J. Org. Chem. 2010, 75, 3935−3937.
(d) Gao, X.; Singh, R. P.; Corey, E. J. Org. Lett. 2010, 12, 1812−1814.
(e) Kim, Y. W.; Georg, G. Org. Lett. 2014, 16, 1574−1577.
(3) For selected references, see: (a) Brown, J. D.; Foley, M. A.; Comins,
D. L. J. Am. Chem. Soc. 1988, 110, 7445−7447. (b) Comins, D. L. J. Am.
Chem. Soc. 1993, 115, 8851−8852. (c) Sato, M.; Aoyagi, S.; Yago, S.;
Kibayashi, C. Tetrahedron Lett. 1996, 37, 9063−9066. (d) Sebesta, R.;
Pizzuti, M. G.; Boersma, A. J.; Minnaard, A. J.; Feringa, B. L. Chem.
Commun. 2005, 1711−1713. (e) McCall, W. S.; Grillo, T. A.; Comins,
D. L. Org. Lett. 2008, 10, 3255−3257. (f) McCall, W. S.; Comins, D. L.
Org. Lett. 2009, 11, 2940−2942. (g) Endo, K.; Ogawa, M.; Shibata, T.
Angew. Chem., Int. Ed. 2010, 49, 2410−2413.
(4) For selected references, see: (a) Xie, C.; Runnegar, M. T. C.;
Snider, B. B. J. Am. Chem. Soc. 2000, 122, 5017−5024. (b) Heintzelman,
G. R.; Fang, W.; Keen, S. P.; Wallace, G. A.; Weinreb, S. M. J. Am. Chem.
Soc. 2002, 124, 3939−3945. (c) Maloney, D. J.; Danishefsky, S. J. Angew.
Chem., Int. Ed. 2007, 46, 7789−7792. (d) Muller, D.; Alexakis, A. Org.
Lett. 2012, 14, 1842−1845.
(12) For representative discussions on antiperiplanar and synclinal
transition states, see: (a) Keck, G. E.; Savin, K. A.; Cressman, E. N.;
Abbott, D. E. J. Org. Chem. 1994, 59, 7889−7896. (b) Denmark, S. E.;
Beutner, G. L.; Wynn, T.; Eastgate, M. D. J. Am. Chem. Soc. 2005, 127,
3774−3789. (c) Denmark, S. E.; Lee, W. Chem. - Asian J. 2008, 3, 327−
341. (d) Beutner, G. L.; Denmark, S. E. Angew. Chem., Int. Ed. 2013, 52,
9086−9096. For representative discussions on the transition states of
Mukaiyama−Aldol reactions, see: (e) Kalesse, M.; Cordes, M.;
Symkenberg, G.; Lu, H. Nat. Prod. Rep. 2014, 31, 563−594. (f) Hassfeld,
J.; Christmann, M.; Kalesse, M. Org. Lett. 2001, 3, 3561−3564.
(13) For representative discussions on secondary orbital interactions,
see: Lu, H.-H.; Martinez, M. D.; Shenvi, R. A. Nat. Chem. 2015, 7, 604−
607.
(14) Preparation of O-silyl ketene acteal using TTMSS as a protecting
group was unsuccessful.
(15) Hamblett, C. L.; Sloman, D. L.; Kliman, L. T.; Adams, B.; Ball, R.
G.; Stanton, M. G. Tetrahedron Lett. 2007, 48, 2079−2082.
(16) (a) Furst, A.; Plattner, P. A. Helv. Chim. Acta 1949, 32, 275−283.
̈
(b) Kirby, A. J. Stereoelectronic Effects; Oxford Science Publications: New
York, 2002; p 54.
(17) Bugarin, A.; Jones, K. D.; Connell, B. T. Chem. Commun. 2010, 46,
1715−1717.
(18) (a) Hwang, Y. C.; Fowler, F. W. J. Org. Chem. 1985, 50, 2719−
2726. (b) Moran, W. J.; Goodenough, K. M.; Raubo, P.; Harrity, J. P. A.
Org. Lett. 2003, 5, 3427−3429.
(19) Bardot, V.; Gardette, D.; Gelas-Mialhe, Y.; Gramain, J.; Remuson,
R. Heterocycles 1998, 48, 507−518.
(20) Verkade, J. M. M.; van der Pijl, F.; Willems, M. M. J. H. P.;
Quaedflieg, F. L. D.; Rutjes, F. J. T. J. Org. Chem. 2009, 74, 3207−3210.
D
Org. Lett. XXXX, XXX, XXX−XXX