ORGANIC
LETTERS
2007
Vol. 9, No. 23
4757-4760
Synthesis of the C1
Amphidinol 3, Featuring a
Alkyllithium Addition Reaction
−
C52 Fragment of
â
-Alkoxy
John R. Huckins, Javier de Vicente, and Scott D. Rychnovsky*
Department of Chemistry, 1102 Natural Sciences II, UniVersity of California,
IrVine, California 92697-2025
srychnoV@uci.edu
Received August 24, 2007
ABSTRACT
An advanced intermediate for the synthesis of amphidinol 3 has been prepared. A cross-metathesis reaction was used to couple the C1
and C13 C26 segments. An unusual -alkoxy alkyllithium reagent was generated from this segment and added to a Weinreb amide to assemble
the C1 C52 section of amphidinol 3. These compounds represent some of the most advanced intermediates reported to date for the synthesis
−C12
−
â
−
of amphidinol 3.
The amphidinols are a fascinating group of metabolites
isolated from the marine dinoflagellates Amphidinium klebsii
and Amphidinium carterae.1 Amphidinol 3 (1) exhibits potent
hemolytic activity against human erythrocytes as well as
antifungal activity against Aspergillus niger.1 A variety of
amphidinols have been reported, along with the structurally
similar compounds luteophanol A and lingshuiol A and B.2
Common structural features of these natural products are two
highly substituted tetrahydropyran (THP) rings, a long, irreg-
ular polyol domain, and a skipped polyene chain. Among
this family of natural products, only the configuration of am-
phidinol 3 has been assigned. The absolute stereochemistry
of amphidinol 3 was elucidated by Murata and co-workers
using a new and powerful J-based NMR spectroscopic tech-
nique.3 Amphidinol 3 has emerged as an important synthetic
target, and a number of groups, including our own,4 have
reported progress toward its synthesis.5 Herein, we describe
the synthesis of the fully protected C1-C52 fragment.
Our retrosynthetic analysis for amphidinol 3 is illustrated
in Figure 1. The three components are a bis-tetrahydropyran
2, a polyene sulfone 3, and the protected polyol 4. The bis-
THP 2 is similar to and derived from an intermediate we
have previously reported.4 Synthesis and coupling reactions
with the polyene sulfone have also been described.4a The
synthesis of protected polyol phenylthio ether 4 and strategies
for its coupling will be the focus of this discussion.
(1) Murata, M.; Matsuoka, S.; Matsumori, N.; Paul, G. K.; Tachibana,
K. J. Am. Chem. Soc. 1999, 121, 870-871.
(3) Matsumori, N.; Kaneno, D.; Murata, M.; Nakamura, H.; Tachibana,
K. J. Org. Chem. 1999, 64, 866-876.
(2) (a) Paul, G. K.; Matsumori, N.; Murata, M.; Tachibana, K. Tetra-
hedron Lett. 1995, 36, 6279-6282. (b) Satake, M.; Murata, M.; Yasumoto,
T.; Fujita, T.; Naoki, H. J. Am. Chem. Soc. 1991, 113, 9859-9861. (c)
Houdai, T.; Matsuoka, S.; Murata, M.; Satake, M.; Ota, S.; Oshima, Y.;
Rhodes, L. L. Tetrahedron 2001, 57, 5551-5555. (d) Paul, G. K.;
Matsumori, N.; Konoki, K.; Murata, M.; Tachibana, K. J. Mar. Biotechnol.
1997, 5, 124-128. (e) Echigoya, R.; Rhodes, L.; Oshima, Y.; Satake, M.
Harmful Algae 2005, 4, 383-389. (f) Doi, Y.; Ishibshi, M.; Nakamichi,
H.; Kosaka, T.; Ishikawa, T.; Kobayashi, J. i. J. Org. Chem. 1997, 62, 3820-
3823. (g) Huang, X.-C.; Zhao, D.; Guo, Y.-W.; Wu, H.-M.; Trivellone, E.;
Cimino, G. Tetrahedron Lett. 2004, 45, 5501-5504.
(4) (a) de Vicente, J.; Huckins, J. R.; Rychnovsky, S. D. Angew. Chem.,
Int. Ed. 2006, 45, 7258-7262. (b) De Vicente, J.; Betzemeier, B.;
Rychnovsky, S. D. Org. Lett. 2005, 7, 1853-1856.
(5) (a) BouzBouz, S.; Cossy, J. Org. Lett. 2001, 3, 1451-1454. (b)
Flamme, E. M.; Roush, W. R. Org. Lett. 2005, 7, 1411-1414. (c) Hicks,
J. D.; Flamme, E. M.; Roush, W. R. Org. Lett. 2005, 7, 5509-5512. (c)
Chang, S.-K.; Paquette, L. A. Synlett 2005, 2915-2918. (d) Paquette, L.
A.; Chang, S.-K. Org. Lett. 2005, 7, 3111-3114. (e) Dubost, C.; Marko, I.
E.; Bryans, J. Tetrahedron Lett. 2005, 46, 4005-4009. (f) Bedore, M. W.;
Chang, S.-K.; Paquette, L. A. Org. Lett. 2007, 9, 513-516.
10.1021/ol7020934 CCC: $37.00
© 2007 American Chemical Society
Published on Web 10/18/2007