454
M. Banerjee et al. / European Journal of Medicinal Chemistry 55 (2012) 449e454
[3] WHO. Leishmaniasis: The Global Trend. WHO, Geneva, Switzerland. http://
compound was used in the next step without further
characterization.
[4] D.A. Kumar, A. Kulshrestha, R. Singh, P. Salotra, In vitro susceptibility of field
isolates of Leishmania donovani to miltefosine and amphotericin B: correlation
with sodium antimony gluconate susceptibility and implications for treatment
in areas of endemicity, Antimicrob. Agents Chemother. 53 (2009) 835e838.
[5] P.L. Olliaro, P.J. Guerin, S. Gerstl, A.A. Haaskjold, J.A. Rottingen, S. Sundar,
Treatment options for visceral leishmaniasis: a systematic review of clinical
studies done in India, 1980e2004, Lancet Infect. Dis. 5 (2005) 763e774.
[6] S. Sundar, T.K. Jha, C.P. Thakur, J. Engel, H. Sindermann, C. Fischer, K. Junge,
A. Bryceson, J. Berman, Oral miltefosine for Indian visceral leishmaniasis,
N. Engl. J. Med. 347 (2002) 1739e1746.
4.4.9. N,N0-(2,20-Di-isopropoxy-[1,10-biphenyl]-4,40-diyl)
dipicolinimidamide hydrochloride (13)
Yield: 95%; mp 261e264 ꢁC; 1H NMR (DMSO-d6),
d (ppm): 1.28
(d, J ¼ 6.0 Hz, 12H), 4.41 (septet, J ¼ 6.0 Hz, 2H), 6.68 (d, J ¼ 2.2 Hz,
2H), 6.71 (dd, J ¼ 8.0 Hz, 2.2 Hz, 2H), 7.28 (d, J ¼ 8.0 Hz, 2H), 7.78 (m,
2H), 8.24 (m, 2H), 8.66 (d, J ¼ 7.8 Hz, 2H), 8.91 (d, J ¼ 4.0 Hz, 2H),
10.32 (br s, 2H), 11.36 (br s, 2H), 12.01 (br s, 2H); 13C NMR (DMSO-
[7] S. Sundar, H. Mehta, A.V. Suresh, S.P. Singh, M. Rai, H.W. Murray, Amphotericin
d6),
d (ppm): 23.1, 72.1, 105.9, 111.8, 116.5, 124.2, 137.2, 138.8, 145.2,
B
treatment for Indian visceral leishmaniasis: conventional versus lipid
147.2, 150.3, 156.2, 157.1, 159.3; ESI-MS: Calc. for C30H32N6O2 (base):
508.3, found 509.4 (M þ Hþ); Anal. Calc. for C30H32N6O2. 2HCl.
1.4H2O: C, 59.45; H, 6.12; N, 13.87. Found: C, 59.55; H, 6.05; N,13.64.
formulations, Clin. Infect. Dis. 38 (2004) 377e383.
[8] C. Yeates, Sitamaquine GlaxoSmithKline/Walter Reed Army Institute, Curr.
Opin. Invest. Drugs 3 (2002) 1446e1452.
[9] C.E. Stephens, R. Brun, M.M. Salem, K.A. Werbovetz, F. Tanious,
W.D. Wilson, D.W. Boykin, The activity of diguanidino and ’reversed’ dia-
midino 2,5-diarylfurans versus Trypanosoma cruzi and Leishmania dono-
vani, Bioorg. Med. Chem. Lett. 13 (2003) 2065e2069.
[10] C.E. Stephens, F. Tanious, S. Kim, W.D. Wilson, W.A. Schell, J.R. Perfect,
S.G. Franzblau, D.W. Boykin, Diguanidino and "reversed" diamidino
2,5-diarylfurans as antimicrobial agents, J. Med. Chem. 44 (2001) 1741e1748.
[11] C.J. Collar, X. Zhu, K. Werbovetz, D.W. Boykin, W.D. Wilson, Molecular factors
governing inhibition of arylimidamides against Leishmania: conservative
computational modeling to improve chemotherapies, Bioorg. Med. Chem. 19
(2011) 4552e4561.
[12] A.C. Rosypal, J.E. Hall, S. Bakunova, D.A. Patrick, S. Bakunov, C.E. Stephens,
A. Kumar, D.W. Boykin, R.R. Tidwell, In vitro activity of dicationic compounds
against a North American foxhound isolate of Leishmania infantum, Vet. Par-
asitol. 145 (2007) 207e216.
[13] A.C. Rosypal, K.A. Werbovetz, M.M. Salem, C.E. Stephens, A. Kumar,
D.W. Boykin, J.E. Hall, R.R. Tidwell, Inhibition by dications of in vitro growth of
Leishmania major and Leishmania tropica: causative agents of old world
cutaneous leishmaniasis, J. Parasitol. 94 (2008) 743e749.
[14] M.Z. Wang, X. Zhu, A. Srivastava, Q. Liu, J.M. Sweat, T. Pandharkar,
C.E. Stephens, E. Riccio, T. Parman, M. Munde, S. Mandal, R. Madhubala,
R.R. Tidwell, W.D. Wilson, D.W. Boykin, J.E. Hall, D.E. Kyle, K.A. Werbovetz,
Novel arylimidamides for treatment of visceral leishmaniasis, Antimicrob.
Agents Chemother. 54 (2010) 2507e2516.
[15] G. Dda. Batista, M.M. Batista, G.M. de Oliveira, P.B. do Amaral, J. Lannes-Vieira,
C.C. Britto, A. Junqueira, M.M. Lima, A.J. Romanha, P.A. Sales Junior,
C.E. Stephens, D.W. Boykin, M. de N.Soeiro, Arylimidamide DB766, a potential
chemotherapeutic candidate for Chagas’ disease treatment, Antimicrob.
Agents Chemother. 54 (2010) 2940e2952.
[16] S.M. Sondhi, R. Ram, P. Roy, S.K. Agrawal, A.K. Saxena, Synthesis, anti-
inflammatory, and anticancer activity evaluation of some heterocyclic ami-
dine and bis-amidine derivatives, J. Heterocyclic Chem. 48 (2011) 921e926.
[17] A. Daliry, M.Q. Pires, C.F. Silva, R.S. Pacheco, M. Munde, C.E. Stephens,
A. Kumar, M.A. Ismail, Z. Liu, A.A. Farahat, S. Akay, P. Some, Q. Hu,
D.W. Boykin, W.D. Wilson, S. De Castro, M. de N.Soeiro, The trypanocidal
activity of amidine compounds does not correlate with their binding affinity
to Trypanosoma cruzi kinetoplast DNA, Antimicrob. Agents Chemother. 55
(2011) 4765e4773.
[18] I.K. Khanna, Y. Yu, R.M. Huff, R.M. Weier, X. Xu, F.J. Koszyk, P.W. Collins,
J.N. Cogburn, P.C. Isakson, C.M. Koboldt, J.L. Masferrer, W.E. Perkins, K. Seibert,
A.W. Veenhuizen, J. Yuan, D.C. Yang, Y.Y. Zhang, Selective cyclooxygenase-2
inhibitors: heteroaryl modified 1,2-diarylimidazoles are potent, orally active
antiinflammatory agents, J. Med. Chem. 43 (2000) 3168e3185.
[19] A. Furst, R.E. Moore, Reductions with hydrazine hydrate catalyzed by Raney
nickel. II. Aromatic nitro compounds to intermediate products, J. Amer. Chem.
Soc. 79 (1957) 5492e5493.
[20] Y. Hayashi, S. Yamaguchi, W.Y. Cha, D. Kim, H. Shinokubo, Synthesis of directly
connected BODIPY oligomers through SuzukieMiyaura coupling, Org. Lett. 13
(2011) 2992e2995.
[21] W.D. Wilson, F.A. Tanious, M. Fernandez-Saiz, C.T. Rigl, Evaluation of drug-
nucleic acid interactions by thermal melting curves, Methods in Mol. Biol.,
DrugeDNA Interaction Protocols 90 (1997) 219e240.
[22] D.A. Delfin, R.E. Morgan, X. Zhu, K.A. Werbovetz, Redox-active dinitrodiphenylth-
ioethers against Leishmania: synthesis, structureeactivity relationships and
mechanism of action studies, Bioorg. Med. Chem. 17 (2009) 820e829.
[23] X. Zhu, T. Pandharkar, K.A. Werbovetz, Identification of new antileshmanial
leads from hits obtained from high-throughput screening, Antimicrob. Agents
Chemother. 56 (2012) 1182e1189.
4.4.10. 4,40-(Oxybis(methylene))bis(nitrobenzene) (16)
4-Nitrobenzyl alcohol (1.2 g, 7.84 mmol) was dissolved in 5 mL
of dry DMF, cooled in an ice bath and NaH (60% dispersion in
mineral oil) (0.41 g, 10.2 mmol) was added. After 10e15 min,
a solution of 4-nitrobenzyl bromide (1.54 g, 7.13 mmol) in 2 mL of
DMF was added followed by a catalytic amount of NaI. After
allowing the reaction mixture to warm to room temperature over
a period of 4 h, it was quenched by the addition of water to obtain
a yellow solid which was washed with ether and recrystallized
from ethanol.
Yield: 52%; mp 231e233 ꢁC; 1H NMR (DMSO-d6),
d (ppm): 4.51
(s, 4H), 7.84 (d, J ¼ 8.0 Hz, 2H), 8.10 (d, J ¼ 8.0 Hz, 2H); 13C NMR
(DMSO-d6), d (ppm), 74.1, 119.4, 126.1, 143.1, 144.5; ESI-MS: Calc. for
C14H12N2O5: 288.1, found 289.2 (M þ Hþ). This compound was used
in the next step without further characterization.
4.4.11. 4,40-(Oxybis(methylene))dianiline (17)
Yield: 92%; mp 178e180 ꢁC; 1H NMR (DMSO-d6),
d (ppm): 3.45
(br s, 4H), 4.59 (s, 4H), 6.93 (d, J ¼ 8.1 Hz), 7.14 (d, J ¼ 8.1 Hz); 13C
NMR (DMSO-d6),
d (ppm): 75.2, 116.3, 126.9, 128.9, 146.1; ESI-MS:
Calc. for C14H16N2O: 228.1, found 229.2 (M þ Hþ); This compound
was used in the next step without further characterization.
4.4.12. N,N0-((Oxybis(methylene))bis(4,1-phenylene))
dipicolinimidamide hydrochloride (18)
Yield: 73%; mp 280e282 ꢁC (dec); 1H NMR (DMSO-d6),
d (ppm):
4.51 (s, 4H), 7.01 (d, J ¼ 8.2 Hz, 4H), 7.42 (d, J ¼ 8.2 Hz, 4H), 7.81 (m,
2H), 8.24 (dd, J ¼ 7.8, 6.8 Hz, 2H), 8.39 (d, J ¼ 7.8 Hz, 2H), 8.89
(d, J ¼ 4.0 Hz, 2H), 10.26 (br s, 2H), 11.38 (br s, 2H), 12.02 (br s, 2H).
13C NMR (DMSO-d6),
d (ppm): 74.4, 118.2, 126.2, 132.4, 144.1,
147.6, 150.7, 152.3, 152.8, 158.2, and 159.5; ESI-MS: Calc. for
C26H24N6O (base): 436.2, found 437.3 (free base M þ Hþ); Anal.
Calc. for C26H24N6O. 3.5 HCl. 0.5H2O: C, 54.48; H, 5.01; N, 14.66.
Found: C, 54.35; H, 5.04; N, 14.44.
Acknowledgements
This work was supported by an award from the Bill and Melinda
Gates Foundation (RB, WDW, KAW, DWB) and NIH grant AI064200
(WDW, DWB). The sponsors had no role in study design; in the
collection, analysis and interpretation of data; in the writing of this
report; nor in the decision to publish.
[24] S.A. Bakunov, S.M. Bakunova, E.V.K. Suresh-Kumar, R.J. Lombardy, S.K. Jones,
A.S. Bridges, O. Zhirnova, J.E. Hall, T. Wenzler, R. Brun, R.R. Tidwell, Synthesis
and antiprotozoal activity of cationic 1,4-diphenyl-1H-1,2,3-triazoles, J. Med.
Chem. 53 (2010) 254e265.
[25] A.A. Farahat, E. Paliakov, A. Kumar, A.-E.M. Bargash, F.E. Goda, H.M. Eisa,
T. Wenzler, R. Brun, Y. Liu, W.D. Wilson, D.W. Boykin, Exploration of larger
central ring linkers in furamidine analogues: synthesis and evaluation of their
DNA binding, antiparasitic and fluorescence properties, Bioorg. Med. Chem. 19
(2011) 2156e2167.
References
[1] K. Stuart, R. Brun, S. Croft, A. Fairlamb, R.E. Gürtler, J. McKerrow, S. Reed,
R. Tarleton, Kinetoplastids: related protozoan pathogens, different diseases,
J. Clin. Invest. 118 (2008) 1301e1310.
[2] F. Chappuis, S. Sundar, A. Hailu, H. Ghalib, S. Rijal, R.W. Peeling, J. Alvar,
M. Boelaert, Visceral leishmaniasis: what are the needs for diagnosis, treat-
ment and control, Nat. Rev. Microbiol. 5 (2007) 873e882.