Please do not adjust margins
Organic & Biomolecular Chemistry
Page 6 of 8
ARTICLE
Journal Name
suspension was placed in a quartz cuvette with a 10 mm × 10 mm 8. S. M. Mandel, P. N. D. Singh, S. Muthukrishnan, M. Chang, J. A.
4210.
DOI: 10.1039/C7OB01731F
cross section, and the slurry purged with argon for ~5 min. T
9. S. M. Mandel, J. A. Krause Bauer and A. D. Gudmundsdottir, Org.
Lett., 2001, 3, 523-526.
10. P. N. D. Singh, S. M. Mandel, R. M. Robinson, Z. Zhu, R. Franz, B.
S. Ault and A. D. Gudmundsdóttir, J. Org. Chem., 2003, 68, 7951-
7960.
Phosphorescence. Phosphorescence spectra were measured at 0.26
mM in degassed mTHF at liquid nitrogen temperatures (77 K) using
HORIBA FluoroMax4.
Calculation. All geometries were optimized at the B3LYP level of
theory with the 6-31+G(d) basis set, as implemented in the
Gaussian09 programs. Absorption spectra were calculated using TD-
DFT.26-28 All transition states were confirmed to have one imaginary
vibrational frequency. Intrinsic reaction coordinate calculations were
used to verify that the transition state correlates with the products
and the precursors.29, 30 The calculations were performed at the Ohio
Supercomputer Center.
11. J. B. Foresman and Æ. Frisch, Exploring Chemistry with Electronic
Structure Methods, Gaussian, Inc.:, Pittsburgh, PA, 1996.
12. P. N. D. Singh, S. M. Mandel, J. Sankaranarayanan, S.
Muthukrishnan, M. Chang, R. M. Robinson, P. M. Lahti, B. S. Ault
and A. D. Gudmundsdóttir, J. Am. Chem. Soc., 2007, 129, 16263-
16272.
13. S. Muthukrishnan, S. M. Mandel, J. C. Hackett, P. N. D. Singh, C.
M. Hadad, J. A. Krause and A. D. Gudmundsdóttir, J. Org. Chem.,
2007, 72, 2757-2768.
14. R. F. Klima, A. V. Jadhav, P. N. D. Singh, M. Chang, C. Vanos, J.
Sankaranarayanan, M. Vu, N. Ibrahim, E. Ross, S. McCloskey, R.
S. Murthy, J. A. Krause, B. S. Ault and A. D. Gudmundsdóttir, J.
Org. Chem., 2007, 72, 6372-6381.
15. J. Sankaranarayanan, L. N. Bort, S. M. Mandel, P. Chen, J. A.
Krause, E. E. Brooks, P. Tsang and A. D. Gudmundsdottir, Org.
Lett., 2008, 10, 937-940.
Conclusion
The details of the mechanism by which azide 1 forms imine 2
selectively in the solid-state have been revealed. LFP of nanocrystals
of azide 1 verified that 1 undergoes α-cleavage in the solid-state to
form benzoyl radical 4, which can combine with imine radical 6 to
give 2. The α-cleavage pathway is favored over triplet energy transfer
to the azido chromophore because the crystal lattice stabilizes the
triplet ketone with (n,π*) configuration.
16. A. Sasaki, L. Mahé, A. Izuoka and T. Sugawara, Bull. Chem. Soc.
Jpn., 1998, 71, 1259-1275.
17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.
A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A.
F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M.
Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E.
Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N.
Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.
Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R.
L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P.
Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J.
B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09,
Revsions A.02, Gaussian, Inc., Wallingford CT, 2016.
18. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
19. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
20. W. G. McGimpsey and J. C. Scaiano, Can. J. Chem., 1988, 66,
1474-1478.
21. B. Batanero, J. Escudero and F. Barba, Synthesis, 1999, 1999,
1809-1813.
22. R. F. Borch, M. D. Bernstein and H. D. Durst, J. Am. Chem. Soc.,
1971, 93, 2897-2904.
23. P. Baburajan and K. P. Elango, Tertrahedron Lett., 2014, 55,
1006-1010.
24. R. Hartman, M. Frotscher, S. Oberwinkler, E. Bey, US Pat., 2008.
25. S. Muthukrishnan, J. Sankaranarayanan, R. F. Klima, T. C. S. Pace,
C. Bohne and A. D. Gudmundsdottir, Org. Lett., 2009, 11, 2345-
2348.
Acknowledgements
We thank the National Science Foundation (CHE-1464694) and the
Ohio Supercomputer Center (OSC) for their generous support of this
work. BL is grateful for a NSF-REU (CHE-1156449) fellowship.
Crystallographic data were collected through the SCrALS (Service
Crystallography at the Advanced Light Source) program at Beamline
11.3.1, at the Advanced Light Source (ALS), Lawrence Berkeley
National Laboratory. The ALS is supported by the U.S. Department of
Energy, Office of Energy Sciences, under contract DE-AC02-
05CH11231. This work was supported by JSPS KAKENHI Grant
Number JP 17H03022.
Notes and references
1. D. Cambié, C. Bottecchia, N. J. W. Straathof, V. Hessel and T.
Noël, Chem. Rev., 2016, 116, 10276-10341.
2. M. B. Gawande, V. D. B. Bonifacio, R. Luque, P. S. Branco and R.
S. Varma, Chem. Soc. Rev., 2013, 42, 5522-5551.
3. V. Ramamurthy and K. Venkatesan, Chem. Rev., 1987, 87, 433-
481.
4. M. A. Garcia-Garibay, Curr. Opin. Solid State Mater. Sci., 1998,
3, 399-406.
5. G. Kuzmanich, J. Xue, J.-C. Netto-Ferreira, J. C. Scaiano, M. Platz
and M. A. Garcia-Garibay, Chem. Sci., 2011, 2, 1497-1501.
6. S. Simoncelli, G. Kuzmanich, M. N. Gard and M. A. Garcia-
Garibay, J. Phys. Org. Chem., 2010, 23, 376-381.
26. R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 1996, 256,
454-464.
27. J. B. Foresman, M. Head-Gordon, J. A. Pople and M. J. Frisch, J.
Phys. Chem., 1992, 96, 135-149.
28. R. E. Stratmann, G. E. Scuseria and M. J. Frisch, J. Chem. Phys.,
1998, 109, 8218-8224.
7. A. J. L. Ayitou, K. Flynn, S. Jockusch, S. I. Khan and M. A. Garcia-
Garibay, J. Am. Chem. Soc., 2016, 138, 2644-2648.
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins