Table 1 Surface properties of the polymers
BET Surface
Area/m2 gÀ1
Langmuir Surface
Area/m2 gÀ1
Total Pore
Volume/cm3 gÀ1a
Micropore
Volume/cm3 gÀ1a
DFT Dominant
Pore Diameter/nma
H–K Dominant
Pore Diameter/nmb
POP-1
POP-2
POP-3
POP-4
1031
1013
1246
1033
1387
1378
1515
1402
0.641
0.712
0.729
0.730
0.378
0.341
0.448
0.402
0.77
0.74
0.88
0.81
0.83
0.80
0.90
0.85
a
b
Data calculated from nitrogen adsorption isotherm with NLDFT method. Data calculated from nitrogen adsorption isotherm with H–K method.
PD studied. Further investigation on hydrogen-polymer
interaction in confined space at the molecular level using
advanced characterization methods is underway.
This work was supported by the U.S. Department of
Energy’s Fuel Cell Technologies program under the Office of
Energy Efficiency and Renewal Energy. The authors wish to
thank Dr Shengqian Ma for his helpful discussion and experi-
mental support from Mr Jose R. Regalbuto. Use of Argonne’s
LCRC computational resources is gratefully acknowledged.
Notes and references
isotherms for polymer POP-3 under 77 K (squares), 87 K (circles),
1 (a) B. S. Ghanem, K. J. Msayib, N. B. McKeown, K. D. M. Harris,
Fig. 3 Hydrogen adsorption (solid symbols)/desorption (open symbols)
195 K (triangles), and room temperature (diamonds).
Z. Pan, P. M. Budd, A. Butler, J. Selbie, D. Book and A. Walton,
Chem. Commun., 2007, 67–69; (b) N. B. McKeown, B. Ghanem,
K. J. Msayib, P. M. Budd, C. E. Tattershall, K. Mahmood, S. Tan,
D. Book, H. Langmi and A. Walton, Angew. Chem., Int. Ed., 2006,
45, 1804–1807; (c) P. M. Budd, E. S. Elabas, B. S. Ghanem,
S. Makhseed, N. B. Mckeown, K. J. Msayib, C. E. Tattershall
and D. Wang, Adv. Mater., 2004, 16, 456–459; (d) S. Makhseed and
J. Samuel, Chem. Commun., 2008, 4342–4344; (e) N. Du,
G. P. Robertson, J. Song, I. Pinnau, S. Thomas and
M. D. Guiver, Macromolecules, 2008, 41, 9656–9662.
2 (a) J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, H. Niu,
J. T. A. Jones, Y. Z. Khimyak and A. I. Cooper, J. Am. Chem.
Soc., 2008, 130, 7710–7720; (b) J.-X. Jiang, F. Su, A. Trewin,
C. D. Wood, N. L. Campbell, H. Niu, C. Dickinson,
A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak and A. I. Cooper,
Angew. Chem., Int. Ed., 2007, 46, 8574–8578; (c) J.-X. Jiang,
A. Trewin, F. Su, C. D. Wood, H. Niu, J. T. A. Jones,
Y. Z. Khimyak and A. I. Cooper, Macromolecules, 2009, 42,
Fig. 4 Heat of adsorption at low coverage for POP-1 (red square),
POP-2 (yellow diamond), POP-3 (magenta hexagon), and POP-4
(cyan triangle).
2658–2666; (d) E. Stockel, X. Wu, A. Trewin, C. D. Wood,
¨
R. Clowes, N. L. Campbell, J. T. A. Jones, Y. Z. Khimyak,
D. J. Adams and A. I. Cooper, Chem. Commun., 2009, 212–214.
3 (a) C. D. Wood, B. Tan, A. Trewin, H. Niu, D. Bradshaw,
M. J. Rosseinsky, Y. Z. Khimyak, N. L. Campbell, R. Kirk,
E. Stockel and A. I. Cooper, Chem. Mater., 2007, 19, 2034–2048;
(b) J.-Y. Lee, C. D. Wood, D. Bradshaw, M. J. Rosseinsky and
A. I. Cooper, Chem. Commun., 2006, 2670–2672.
values of DHads at around 1.5 wt% hydrogen loading were in
the range of 4.5–6.5 kJ molÀ1, and did not correlate with PD
or Np. This is somewhat expected since hydrogen adsorption is
less sensitive to the surface structure at 77 K or 87 K as
hydrogen loading increases.
4 S. Yuan, S. Kirklin, B. Dorney, D.-J. Liu and L. Yu, Macro-
molecules, 2009, 42, 1554–1559.
5 M. Rose, W. Bohlmann, M. Sabo and S. Kaskel, Chem. Commun.,
2008, 2462–2464.
6 (a) J. Weber, M. Antonietti and A. Thomas, Macromolecules, 2008,
41, 2880–2885; (b) J. Schmidt, J. Weber, J. D. Epping, M. Antonietti
and A. Thormas, Adv. Mater., 2009, 21, 702–705; (c) J. Weber and
A. Thomas, J. Am. Chem. Soc., 2008, 130, 6334–6335; (d) J. Weber,
Q. Su, M. Antonietti and A. Thomas, Macromol. Rapid Commun.,
2007, 28, 1871–1876.
7 F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Klock,
M. O’Keeffe and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131,
4570–4571.
We should point out that these POPs are generally considered
amorphous with 3-dimensionally arranged network structures.
The relatively higher DHads for POP-3 and POP-4 could also be
due to the existence of hidden ultra-small pores resulting from
higher number of trimerization sites, thus not accessible to N2
during BET isotherm measurement.
In summary, four porous polymers with surface areas up to
1246 m2 gÀ1 have been successfully synthesized from simple,
aromatic ethynyl monomers. The polymeric pores are all
narrowly distributed and fine-tuned with
a dimension
8 J. Schmidt, M. Werner and A. Thomas, Macromolecules, 2009, 42,
4426–4429.
9 (a) J. Germain, J. Hradil, J. M. J. Frechet and F. Svec, Chem.
Mater., 2006, 18, 4430–4435; (b) J. Germain, F. Svec and
J. M. J. Frechet, Chem. Mater., 2008, 20, 7069–7076.
variability of less than 1 nm, close to the van der Waals
diameters of various small gas molecules. Isosteric heat of
adsorption measurement revealed that DHads is more sensitive
to monomer structure than the pore size within the range of
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 4547–4549 | 4549