Organometallics
Article
first matrix-isolation and electronic structure of vinyl- substituted
silylenes. Tetrahedron Lett. 1992, 33, 243. (g) Kira, M.; Maruyama, T.;
Sakurai, H. Extraordinary large red shift of the n(Si)->3p(Si)
transition of silylenes caused by trimethylsilyl and trimethylgermyl
substituents. Chem. Lett. 1993, 22, 1345. (h) Apeloig, Y.; Karni, M.;
West, R.; Welsh, D. Electronic Spectra of Ethynyl- and Vinylsilylenes:
Experiment and theory. J. Am. Chem. Soc. 1994, 116, 9719. (i) Bott, S.
G.; Marshall, P.; Wagenseller, P. E.; Wang, Y.; Conlin, R. T. The
positions of λmax for some trimethylsilyl-substituted silylenes. J.
Organomet. Chem. 1995, 499, 11. (j) Maier, G.; Meudt, A.; Jung, J.;
Pacl, H. In The Chemistry of Organic Silicon Compounds; Rappoport,
Z., Apeloig, Y., Eds.; John Wiley & Sons: New York, 1998; Vol. 2, pp
1143−1185.
K. A. Silylene transfer to α-keto esters and application to the synthesis
of γ-lactones. Tetrahedron 2009, 65, 6447.
(15) Driver, T. G. In Silver in Organic Chemistry; Harmata, M., Ed.;
John Wiley & Sons: New York, 2010; pp 183−227.
(16) (a) Driver, T. G.; Woerpel, K. A. Mechanism of Silver-
Mediated Di-tert-butylsilylene Transfer from a Silacyclopropane to an
Alkene. J. Am. Chem. Soc. 2004, 126, 9993. (b) Mayoral, J. A.;
Rodríguez-Rodríguez, S.; Salvatella, L. A Theoretical Insight into the
Mechanism of the Silver-Catalysed Transsiliranation Reaction. Eur. J.
Org. Chem. 2010, 2010, 1231.
(17) Boudjouk, P.; Black, E.; Kumarathasan, R. Synthesis of 1,1-di-
tert-butylsilirane, the first silirane with no substituents on the ring
carbons. Organometallics 1991, 10, 2095.
(18) Boudjouk, P.; Samaraweera, U.; Sooriyakumaran, R.; Chrusciel,
J.; Anderson, K. R. Convenient Routes to Di-tert-butylsilanediyl:
Chemical, Thermal and Photochemical Generation. Angew. Chem., Int.
Ed. Engl. 1988, 27, 1355.
(19) Masamune, S.; Murakami, S.; Tobita, H. Disilene system (R2Si
= SiR2). The tetra-tert-butyl derivative. Organometallics 1983, 2, 1464.
(8) (a) Becerra, R.; Walsh, R. What have we learnt about heavy
carbenes through laser flash photolysis studies? Phys. Chem. Chem.
Phys. 2007, 9, 2817. (b) Becerra, R.; Walsh, R. Kinetic studies of
reactions of organosilylenes: what have they taught us? Dalton Trans.
2010, 39, 9217.
(9) (a) Levin, G.; Das, P. K.; Lee, C. L. Dimethylsilylene:
spectroscopy, reactivity and complexation in fluid solutions. Organo-
metallics 1988, 7, 1231. (b) Levin, G.; Das, P. K.; Bilgrien, C.; Lee, C.
L. Reactivity and complexation of dimethylsilylene photogenerated
from dedecamethylcyclohexasilane. A kinetic study by laser flash
photolysis. Organometallics 1989, 8, 1206. (c) Yamaji, M.; Hamanishi,
K.; Takahashi, T.; Shizuka, H. Reactivity of dimethylsilylene studied
by laser flash photolysis at 295K. J. Photochem. Photobiol., A 1994, 81,
1. (d) Conlin, R. T.; Netto-Ferreira, J. C.; Zhang, S.; Scaiano, J. C.
Kinetic study of dimesitylsilylene by laser flash photolysis. Organo-
metallics 1990, 9, 1332. (e) Moiseev, A. G.; Leigh, W. J.
Diphenylsilylene. J. Am. Chem. Soc. 2006, 128, 14442. (f) Moiseev,
A. G.; Leigh, W. J. The Direct Detection of Diphenylsilylene and
Tetraphenyldisilene in Solution. Organometallics 2007, 26, 6268.
(g) Moiseev, A. G.; Leigh, W. J. Comparison of the reactivities of
dimethylsilylene (SiMe2) and diphenylsilylene (SiPh2) in solution by
laser flash photolysis methods. Organometallics 2007, 26, 6277.
(h) Moiseev, A. G.; Coulais, E.; Leigh, W. J. Photochemistry of Cyclic
Trisilanes: “Spring-Loaded” Precursors to Methylphenylsilylene.
Chem. - Eur. J. 2009, 15, 8485.
̈
(20) Schafer, A.; Weidenbruch, M.; Peters, K.; von Schnering, H.-G.
Hexa-tert-butylcyclotrisilane, a Strained Molecule with Unusually
Long Si-Si and Si-C Bonds. Angew. Chem., Int. Ed. Engl. 1984, 23, 302.
(21) (a) Weidenbruch, M. Cyclotrisilanes and Related Compounds.
Comments Inorg. Chem. 1986, 5, 247. (b) Weidenbruch, M. Silylenes
and disilenes: examples of low coordinated silicon compounds. Coord.
Chem. Rev. 1994, 130, 275. (c) Weidenbruch, M. Cyclotrisilanes.
Chem. Rev. 1995, 95, 1479. (d) Weidenbruch, M. Some Silicon,
Germanium, Tin, and Lead Analogues of Carbenes, Alkenes, and
Dienes. Eur. J. Inorg. Chem. 1999, 1999, 373. (e) Weidenbruch, M.
Some recent advances in the chemistry of silicon and its homologues
in low coordination states. J. Organomet. Chem. 2002, 646, 39.
(f) Weidenbruch, M. From a Cyclotrisilane to a Cyclotriplumbane:
Low Coordination and Multiple Bonding in Group 14 Chemistry.
Organometallics 2003, 22, 4348.
(22) Gaspar, P. P.; Holten, D.; Konieczny, S.; Corey, J. Y. Laser
photolysis of silylene precursors. Acc. Chem. Res. 1987, 20, 329.
(23) (a) Gordon, M. S.; Schmidt, M. W. Potential triplet silylenes.
Chem. Phys. Lett. 1986, 132, 294. (b) Chung, G.; Gordon, M. S.
Theoretical Study of Addition Reactions of SiX2 to Acetylene (X = H,
CH3, t-Bu, Cl, F). Organometallics 1999, 18, 4881.
(10) Shizuka, H.; Tanaka, H.; Tonokura, K.; Murata, K.; Hiratsuka,
H.; Ohshita, J.; Ishikawa, M. Absorption, emission and reaction
kinetics of dimethylsilylene. Chem. Phys. Lett. 1988, 143, 225.
(11) Safarik, I.; Sandhu, V.; Lown, E. M.; Strausz, O. P.; Bell, T. N.
Rate constants for silylene reactions. Res. Chem. Intermed. 1990, 14,
105.
̈
(24) Weidenbruch, M.; Schafer, A.; Rankers, R. Silicium-
verbindungen mit starken intramolekularen sterischen wechselwirkun-
gen: X. Neue wege zu 1,3,2,4-dithiadisiletanen. J. Organomet. Chem.
1980, 195, 171.
(12) Jasinski, J. M.; Becerra, R.; Walsh, R. Direct Kinetic Studies of
Silicon Hydride Radicals in the Gas Phase. Chem. Rev. 1995, 95, 1203.
(13) Becerra, R.; Walsh, R. Kinetics and mechanisms of silylene
reactions. A prototype for gas-phase acid/base chemistry. Res. Chem.
Kinetics 1995, 3, 263.
(25) Average and standard deviation of 10 determinations made
over the course of the study. The (second-order) decays were
monitored at 530 nm in order to minimize contributions from disilene
8 and were analyzed according to eq 4, where ΔA0 and ΔAt are the
transient absorbances immediately and at time = t after the laser pulse,
respectively, ΔAres is the residual long-lived absorbance after the initial
decay of the signal is complete, ε is the extinction coefficient of the
decaying species at the monitoring wavelength, and l is the path
length.
(14) (a) Driver, T. G.; Franz, A. K.; Woerpel, K. A.
Diastereoselective Silacyclopropanations of Functionalized Chiral
Alkenes. J. Am. Chem. Soc. 2002, 124, 6524. (b) Cirakovic, J.;
Driver, T. G.; Woerpel, K. A. Metal-Catalyzed Silacyclopropanation of
Mono- and Disubstituted Alkenes. J. Am. Chem. Soc. 2002, 124, 9370.
(c) Driver, T. G.; Woerpel, K. A. Mechanism of di-tert-butylsilylene
transfer from a silacyclopropane to an alkene. J. Am. Chem. Soc. 2003,
125, 10659. (d) Cirakovic, J.; Driver, T. G.; Woerpel, K. A. Metal-
Catalyzed Di-tert-butylsilylene Transfer: Synthesis and Reactivity of
Silacyclopropanes. J. Org. Chem. 2004, 69, 4007. (e) Calad, S. A.;
Woerpel, K. A. Silylene Transfer to Carbonyl Compounds and
Subsequent Ireland-Claisen Rearrangements to Control Formation of
Quaternary Carbon Stereocenters. J. Am. Chem. Soc. 2005, 127, 2046.
(f) Howard, B. E.; Woerpel, K. A. Synthesis of Tertiary α-Hydroxy
Acids by Silylene Transfer to α-Keto Esters. Org. Lett. 2007, 9, 4651.
(26) Average and standard deviation of 13 determinations made
over the course of the study.
(27) An estimate of the appropriate scaling factor to use can be
derived by assuming that the extinction coefficient of SitBu2 at 420−
430 nm is zero; the approximate scaling factor is thus given by the
ratio of the transient absorbance at 420−430 nm in the prompt
spectrum to that in the 17.7−17.8 μs spectrum (≈ 0.65).
(28) Apeloig, Y.; Karni, M. The effect of substituents on the first
transition in the visible spectra of silanediyls (silylenes). J. Chem. Soc.,
Chem. Commun. 1985, 1048.
(29) Murov, S. L.; Carmichael, I.; Hug, G. L. Handbook of
́
(g) Nevarez, Z.; Woerpel, K. A. Metal-Catalyzed Silylene Transfer to
Photochemistry, 2nd ed.; Dekker: New York, 1993; p 290.
(30) With 5 as precursor, the maximum expected ΔA0
1/2 the product of the ΔA0 value of the 530 nm absorption (ΔA0
≈ 0.0035) and the ratio of the εmax values from the UV−vis spectra of
SitBu2 and 8 (vide infra; εmax8/εmaxSitBu2 = 9.3), or ca. 0.016 AU. With
430nm
Imines: Synthesis and Reactivity of Silaaziridines. Org. Lett. 2007, 9,
3773. (h) Calad, S. A.; Cirakovic, J.; Woerpel, K. A. Synthesis of
( )-epi-stegobinone utilizing silacyclopropanes as synthetic inter-
mediates. J. Org. Chem. 2007, 72, 1027. (i) Howard, B. E.; Woerpel,
value is
530nm
J
Organometallics XXXX, XXX, XXX−XXX