Journal of the American Chemical Society
Page 4 of 6
Spectral data (PDF)
To demonstrate the synthetic utility of the hydroxyꢀ
directed amidation reaction, we turned our attention to
the catalytic synthesis of dipeptide derivatives without
the use of enzymatic methods,15 which still remains
challenging in modern organic chemistry (Scheme 4).16
To our delight, the reaction of NꢀBocꢀserine methyl ester
1
2
3
4
5
6
7
8
AUTHOR INFORMATION
Corresponding Authors
*tsuji@isc.chubu.ac.jp
*hyamamoto@isc.chubu.ac.jp
(8a) with amino acid methyl esters 9a-d derived from
Lꢀ
alanine, ꢀphenylalanine, ꢀleucine, and ꢀvaline proꢀ
L
L
L
Notes
ceeded in the presence of Ta(OEt)5 as the catalyst to
provide the corresponding dipeptide derivatives 10aa-ad
in 43ꢀ81% yields with excellent diastereoselectivities.17
Furthermore, NꢀBocꢀthreonine methyl ester (8b) was
also transformed into dipeptide derivatives 10ba and
10be in 78% and 63% yields, respectively. Fortunately,
we did not observed any epimerization of amino acid
moiety, which is due to the use of simple methyl ester
rather than highly activated carboxylic acids of the preꢀ
vious peptide coupling reagents.
The authors declare no competing financial interest.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ACKNOWLEDGMENT
This work was supported by ACTꢀC, JST.
REFERENCES
(1) (a) Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org.
Biomol. Chem. 2006, 4, 2337–2347. (b) Constable, D. J. C; Duun, P.
J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L., Jr.; Linderman, R. J.;
Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang,
T. Y. Green. Chem. 2007, 9, 411–420.
(2) For reviews of catalytic synthesis of amides, see: (a) Pattabiꢀ
raman, V. R.; Bode, J. W. Nature 2011, 480, 471–479 and references
cited therein. (b) Liana Allen, C.; Williams, J. M. J. Chem. Soc. Rev.
2011, 40, 3405–3415. (c) Lundberg, H.; Tinnis, F.; Selander, N.;
Adolfsson, H. Chem. Soc. Rev. 2014, 43, 2714ꢀ2742.
(3) For reviews of directed reactions, see: (a) Hoveyda, A. H.; Evꢀ
ans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307–1370. (b) Rousseau,
G.; Breit, B. Angew. Chem. Int. Ed. 2011, 50, 2450–2494.
(4) (a) Katsuki, T. In Comprehensive Asymmetric Catalysis; Jacobꢀ
sen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer: Berlin, 1999;
Vol. 2, p 621. (b) Li, Z.; Yamamoto, H. Acc. Chem. Res. 2013, 46,
506–518.
(5) Zhu, Y.; Burgess, K. Acc. Chem. Res. 2012, 45, 1623–1636.
(6) (a) Oestreich, M.; SempereꢀCuller, F.; Machotta, A. B. Angew.
Chem. Int. Ed. 2005, 44, 149–152. (b) Kandukuri, S. R.; Jiao, L.ꢀY.;
Machotta, A. B.; Oestreich, M. Adv. Synth. Catal. 2014, 356, 1597–
1609. (c) Blaisdell, T. P.; Morken, J. P. J. Am. Chem. Soc. 2015, 137,
8712–8715.
(7) (a) Wang, C.; Yamamoto, H. J. Am. Chem. Soc. 2014, 136,
6888–6891. (b) Wang, C.; Yamamoto, H. Angew. Chem. Int. Ed.
2014, 53, 13920–13923. (c) Wang, C.; Yamamoto, H. J. Am. Chem.
Soc. 2015, 137, 4308–4311.
(8) Camelio, A. M.; Barton, T.; Guo, F.; Shaw, T.; Siegel, D. Org.
Lett. 2011, 13, 1517–1519.
(9) Coulter, M. M.; Kou, K. G. M.; Galligan, B.; Dong, V. M. J. Am.
Chem. Soc. 2010, 132, 16330–16333.
(10) Llaveria, J.; Beltrán, Á.; Sameera, W. M. C.; Locati, A.; Díazꢀ
Requejo, M. M.; Matheu, M. I.; Castillón, S.; Maseras, F.; Pérez, P. J.
J. Am. Chem. Soc. 2014, 136, 5342–5350.
Scheme 4. Catalytic Synthesis of Dipeptide Deriva-
tives
aReaction conditions: 8 (0.25 mmol), 9 (0.75 mmol),
Ta(OEt)5 (0.025 mmol) in toluene (1 mL) at 60ꢀ100 ˚C for
24 h. The diastereomeric ratios (d.r.) were determined by
1H NMR analyses of crude mixtures.
In conclusion, we have developed a new strategy toꢀ
wards the chemoselective synthesis of amides by a tantaꢀ
lum ethoxideꢀcatalyzed hydroxyꢀdirected amidation reꢀ
(11) (a) Miura, M.; Satoh, T.; Hirano, K. Bull. Chem. Soc. Jpn. 2014,
87, 751–764. (b) Mo, F.; Tabor, J. R.; Dong, G. Chem. Lett. 2014, 43,
264–271. (c) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang,
Y. Org. Chem. Front. 2015, 2, 1107–1295.
(12) Examples of metalꢀcatalyzed amidation of esters, see: (a) Han,
C.; Lee, J. P.; Lobkovsky, E.; Porco, J. A., Jr. J. Am. Chem. Soc.
2005, 127, 10039–10044. (b) Morimoto, H.; Fujiwara, R.; Shimizu,
Y.; Morisaki, K.; Ohshima, T. Org. Lett. 2014, 16, 2018–2021. (c)
Lee, J.; Muthaiah, S.; Hong, S. H. Adv. Synth. Catal. 2014, 356,
2653–2660. (d) Nguyen, D. T.; Lenstra, D. C.; Mecinović, J. RSC
Adv. 2015, 5, 77658–77661.
action of
β
ꢀhydroxycarboxylic acid esters with amines,
leading to an array of
β
ꢀhydroxyamides in good yields
with high chemoselectivity. The protocol allowed for
the catalytic synthesis of dipeptide derivatives, which is
still in its infancy in modern organic chemistry. The
development of a method for the catalytic peptide synꢀ
thesis using our directed amidation strategy and its apꢀ
plication to the synthesis of peptide pharmaceuticals are
ongoing in our laboratory.
(13) Bihovsky, R.; Levinson, B. L.; Loewi, R. C.; Erhardt, P. W.;
Polokoff, M. A. J. Med. Chem. 1995, 38, 2119–2129.
ASSOCIATED CONTENT
(14) Based on reviewers’ suggestions, we examined the amidation of
γꢀ and δꢀhydroxyesters. Fortunately, these substrates were reacted
with benzylamine at 60 ˚C under our catalyst system to give the corꢀ
responding γꢀ and δꢀhydroxyamides in 23% and 27% yields, respecꢀ
tively, with >99:1 chemoselectivity. More detailed experiments of
these substrates are in due course.
Supporting Information.
The Supporting Information is available free of charge on
the ACS Publications website.
Experimental procedures (PDF)
ACS Paragon Plus Environment