(C: blue line). I represents the intensity of Lyso-OSC at the time of measurement; I0 represents the intensity of Lyso-OSC at the starting point. λex = 820 nm, λem
= 490-550 nm. Scale bars: 50 μm.
With the established cellular autophagy system in hand, we used Lyso-OSC probe to study the changes of lysosome polarity before
and after autophagy. Given the high brightness of Lyso-OSC, MCF-7 cells were treated with 5 μmol/L of Lyso-OSC. As shown in Fig.
S16 (Supporting information), Lyso-OSC probe were regularly distributed within MCF-7 cells prior to HBSS treatment. From the
fluorescence images of Lyso-OSC, we clearly observed the intracellular distribution of normal lysosomes. After treating MCF-7 cells
with nutrient-lacking HBSS solution, autophagy occurred with a critical decrease in the fluorescence intensity of Lyso-OSC. The
phenomenon indicates that membrane fusion between lysosomes and autophagy lysosomes leads to an increase in lysosomal polarity.
We finally carried out cellular experiments to test the in-vitro monitoring ability of Lyso-OSC for autophagy process. After staining
with 5 μmol/L of Lyso-OSC, MCF-7 cells were incubated with different cell culture mediums (nutrient-rich, nutrient-lacking, and
autophagy inhibitor-containing mediums). The two-photon fluorescence microscopy was used to track MCF-7 cells at different time
(0−4 h). As shown in Fig. 5, in nutrient-rich medium, the fluorescence intensity of MCF-7 maintained within 4 h, indicating the high
photostability of Lyso-OSC. By contrast, the fluorescence intensity of the starved MCF-7 reduced by ~60% after 4 h, demonstrating the
occurrence of autophagy. In 3-methyladenine (3-MA, an autophagy inhibitor) containing HBSS solution, the fluorescence intensity of
MCF-7 cells was maintained, due to the efficient suppression of the autophagy of MCF-7 cells. The above results verified the applicability
of Lyso-OSC to sensitively monitor autophagy process in living cells.
Herein, a highly bright two-photon fluorescent probe Lyso-OSC, was developed for highly sensitive real-time detection of autophagy
process in living cells. The fluorescence quantum yield of Lyso-OSC shows linear correlation to the polarity of the solvent, and is able
to detect the polarity change of cellular environment with high sensitivity. Lyso-OSC can specifically target lysosomes of a variety of
cell lines (MCF-7, CHO, and HeLa cells) and monitor the lysosomal polarity change during the autophagy process. Benefiting from the
strong fluorescence, Lyso-OSC exhibits a large two-photon absorption cross-section of up to 254 GM, and deep tissue penetration depth
of 150 μm. These characteristics will benefit the applications of Lyso-OSC in complex biological circumstances, especially for those
cases with auto-fluorescence background.
Acknowledgments
This work was supported by the National Natural Science Foundation of China (Nos. 21778001, 21672001), and Open Fund for
Discipline Construction in Institute of Physical Science and Information Technology of Anhui University.
References
[1] N. Mizushima, Genes Dev. 21 (2007) 2861-2873.
[2] C. Settembre, A. Fraldi, D.L. Medina, A. Ballabio, Nat. Rev. Mol. Cell Biol. 14 (2013) 283-296.
[3] V. Deretic, T. Saitoh, S. Akira, Nat. Rev. Immunol. 13 (2013) 722-737.
[4] G.K. Alderton, Nat. Rev. Cancer. 15 (2015) 513-513.
[5] R.M. Friedlander, N. Engl. J. Med. 348 (2003) 1365-1375.
[6] G. Mariňo, M. Niso-Santano, E.H. Baehrecke, G. Kroemer, Nat. Rev. Mol. Cell Biol. 15 (2014) 81-94.
[7] N. Mizushima, B. Levine, A.M. Cuervo, D.J. Klionsky, Nature 451 (2008) 1069-1075.
[8] P.D. Jiang, N. Mizushima, Cell Res. 24 (2014) 69-79.
[9] J.M. Swanlund, K.C. Kregel, T.D. Oberley, Autophagy 6 (2010) 270-277.
[10] I. Tanida, N. Minematsu-Ikeguchi, T. Ueno, E. Kominami, Autophagy 1 (2005) 84-91.
[11] N. Mizushima, T. Yoshimori, B. Levine, Cell 140 (2010) 313-326.
[12] Y.X. Lin, S.L. Qiao, Y. Wang, et al., ACS Nano 11 (2017) 1826-1839.
[13] Y. Liu, J. Zhou, L.L. et al., J. Am. Chem. Soc. 138 (2016) 12368-12374.
[14] H.H. He, T.T. He, Z.Q. Zhang, et al., Chin. Chem. Lett. 10 (2018) 1497-1499.
[15] Q. Wang, Y. Feng, J. Jiang, et al., Chin. Chem. Lett. 27 (2016) 1563-1566.
[16] Z.H. Lei, Z.H. Zeng, X.H. Qian, Y.J. Yang, Chin. Chem. Lett. 28 (2017) 2001-2004.
[17] M.L. Wang, D.F. Yue, Q.L. Qiao, L. Miao, Z.C. Xu, Chin. Chem. Lett. 29 (2018) 703-706.
[18] S. Leng, Q.L. Qiao, Y. Gao, L. Miao, Z.C. Xu, Chin. Chem. Lett. 28 (2017) 1911-1915.
[19] D.F. Yue, M.L. Wang, F. Deng, W.T. Yin, Z.C. Xu, Chin. Chem. Lett. 29 (2018) 648-656.
[20] Z.Q. Xu, X.T. Huang, X. Han, et al., Chem 7 (2018) 1609-1628.
[21] P. Ning, W.J. Wang, M. Chen, Y. Feng, X.M. Meng, Chin. Chem. Lett. 28 (2017) 1943-1951.
[22] J.C. Jiang, X.H. Tian, C.Z. Xu, et al., Chem. Commun. 53 (2017) 3645-3648.
[23] Z.J. Guo, S. Park, J.Y. Yoon, I. Shin, Chem. Soc. Rev. 43 (2014) 16-29.
[24] H.M. Kim, B.R. Cho, Chem. Rev. 115 (2015) 5014-5055.
[25] D. Wu, A.C. Sedgwick, T. Gunnlaugsson, et al., Chem. Soc. Rev. 46 (2017) 7105-7123.
[26] H.W. Liu, L.L. Chen, C.Y. Xu, et al., Chem. Soc. Rev. 47 (2018) 7140-7180.
[27] A.S. Klymchenko, Acc. Chem. Res. 50 (2017) 366-375.
[28] A. Niemann, A. Takatsuki, H.P. Elssser, J. Histochem. Cytochem. 48 (2000) 251-258.
[29] B. Levine, G. Kroemer, Cell 132 (2008) 27-42.
[30] L.L. Hou, P. Ning, Y. Feng, et al., Anal. Chem. 90 (2018) 7122-7126.