Solvent Effect on Br Atom-Transfer Radical Addition
J . Org. Chem., Vol. 66, No. 23, 2001 7777
Sch em e 2
solvent effect in detail by performing the reaction in
various solvents and found that a polar solvent as well
as a protic solvent gave better yields. Furthermore, ab
initio calculations have revealed the origin of the solvent
effect on bromine atom-transfer addition.
Ra d ica l Ad d ition of r-Br om o Ca r bon yl
Ta ble 1. Tr ieth ylbor a n e-In d u ced Ra d ica l Ad d ition of
Eth yl Br om oa ceta te to Alk en es in Wa ter
Com p ou n d s to Alk en es
Triethylborane (1.0 M ethanol solution,14 0.50 mL, 0.50
mmol) was added to a suspension of ethyl bromoacetate
(1a , 5.0 mmol) and 1-octene (2a , 1.0 mmol) in water (5
mL) under argon. Air (10 mL) was then introduced to
the reaction flask by a syringe with vigorous stirring. Air
was injected every 30 min. The reaction mixture was
heterogeneous yet clear. After 1.5 h of reaction, extractive
entry
2
R
3
yield (%)
1
2
3
4
5
6
7
8
9
10
11
12
13
2a
2b
2c
2d
2e
2f
2g
2h
2i
n-C6H13
n-C10H21
n-C20H41
3a a
3a b
3a c
3a d
3a e
3a f
3a g
3a h
3a i
80c
65c
(7) Recent examples of radical reactions employing a Lewis acid:
(a) Sibi, M. P.; J asperse, C. P.; J i, J . J . Am. Chem. Soc. 1995, 117,
10779-10780. (b) Guindon, Y.; Lavalle´e, J .-F.; Llinas-Brunet, M.;
Horner, G.; Rancourt, J . J . Am. Chem. Soc. 1991, 113, 9701-9702. (c)
Yang, D.; Ye, X.-Y.; Gu, S.; Xu, M. J . Am. Chem. Soc. 1999, 121, 5579-
5580. (d) Yang, D.; Ye, X.-Y.; Xu, M.; Pang, K.-W.; Cheung, K. K. J .
Am. Chem. Soc. 2000, 122, 1658-1663. (e) Renaud, P.; Moufid, N.;
Kuo, L. H.; Curran, D. P. J . Org. Chem. 1994, 59, 3547-3552. (f)
Murakata, M.; J ono, T.; Mizuno, Y.; Hoshino, O. J . Am. Chem. Soc.
1997, 119, 11713-11714. (g) Murakata, M.; Tsutsui, H.; Hoshino, O.
Org. Lett. 2001, 3, 299-302. (h) Friestad, G. K.; Qin, J . J . Am. Chem.
Soc. 2000, 122, 8329-8330. (i) Sibi, M. P.; J i, J .; Sausker, J . B.;
J asperse, C. P. J . Am. Chem. Soc. 1999, 121, 7517-7526. (j) Ishibashi,
H.; Matsukida, H.; Toyao, A.; Tamura, O.; Takeda, Y. Synlett 2000,
1497-1499. (k) Porter, N. A.; Zhang, G.; Reed, A. D. Tetrahedron Lett.
2000, 41, 5773-5777. (l) Porter, N. A.; Feng, H.; Kavrakaova, I. K.
Tetrahedron Lett. 1999, 40, 6713-6716. (m) Yamamoto, Y.; Onuki, S.;
Yumoto, M.; Asano, N. J . Am. Chem. Soc. 1994, 116, 421-422. (n)
Guindon, Y.; J ung, G.; Guerin, B.; Ogilvie, W. W. Synlett 1998, 213-
220. (o) Mase, N.; Watanabe, Y.; Toru, T. Tetrahedron Lett. 1999, 40,
2797-2800. (p) Nishida, M.; Nishida, A.; Kawahara, N. J . Org. Chem.
1996, 61, 3574-3575. (q) Hayen, A.; Koch, R.; Saak, W.; Haase, D.;
Metzger, J . O. J . Am. Chem. Soc. 2000, 122, 12458-12468. (r) Enholm,
E. J .; Cottone, J . S.; Allais, F. Org. Lett. 2001, 3, 145-147. (s) Sibi, M.
P.; Rheault, T. R. J . Am. Chem. Soc. 2000, 122, 8873-8879. (t) Sibi,
M. P.; Shay, J . J .; J i, J . Tetrahedron Lett. 1997, 38, 5955-5958. (u)
Urabe, H.; Yamashita, K.; Suzuki, K.; Kobayashi, K.; Sato, F. J . Org.
Chem. 1995, 60, 3576-3577. (v) Kim, K.; Okamoto, S.; Sato, F. Org.
Lett. 2001, 3, 67-69.
(8) For a review of reactions in aqueous media: (a) Li, C.-J .; Chan,
T.-H. Organic Reactions in Aqueous Media; J ohn Wiley & Sons: New
York, 1997. (b) Grieco, P. A. Organic Synthesis in Water; Blackie
Academic & Professional: London, 1998. (c) Lubineau, A.; Auge, J . In
Modern Solvents in Organic Synthesis; Knochel, P., Ed.; Springer-
Verlag: Berlin, 1999.
(9) (a) Minisci, F. Synthesis 1973, 1-24. (b) Yamazaki, O.; Togo,
H.; Nogami, G.; Yokoyama, M. Bull. Chem. Soc. J pn. 1997, 70, 2519-
2523. (c) Breslow, R.; Light, J . Tetrahedron Lett. 1990, 31, 2957-2958.
(d) J ang, D. O. Tetrahedron Lett. 1998, 39, 2957-2958. (e) Maitra, U.;
Sarma, K. D. Tetrahedron Lett. 1994, 35, 7861-7862. (f) Bietti, M.;
Baciocchi, E.; Engberts, J . B. F. N. J . Chem. Soc., Chem. Commun.
1996, 1307-1308. (g) Miyabe, H.; Ueda, M.; Naito, T. J . Org. Chem.
2000, 65, 5043-5047. (h) Petrier, C.; Dupuy, C.; Luche, J . L. Tetra-
hedron Lett. 1986, 27, 3149-3152. (i) Giese, B.; Damm, W.; Roth, M.;
Zehnder, M. Synlett 1992, 441-443 (see also ref 7i).
(10) (a) Yorimitsu, H.; Nakamura, T.; Shinokubo, H.; Oshima, K.
J . Org. Chem. 1998, 63, 8604-8605. (b) Yorimitsu, H.; Nakamura, T.;
Shinokubo, H.; Oshima, K.; Omoto, K.; Fujimoto, H. J . Am. Chem. Soc.
2000, 122, 11041-11047. (c) Yorimitsu, H.; Shinokubo, H.; Oshima,
K. Chem. Lett. 2000, 104-105. (d) Wakabayashi, K.; Yorimitsu, H.;
Shinokubo, H.; Oshima, K. Bull. Chem. Soc. J pn. 2000, 73, 2377-
2378. (e) Yorimitsu, H.; Shinokubo, H.; Oshima, K. Bull. Chem. Soc.
J pn. 2001, 74, 225-235 (see also ref 3d).
(11) (a)Nozaki, K.; Oshima, K.; Utimoto, K. J . Am. Chem. Soc. 1987,
109, 2547-2548. (b) Oshima, K.; Utimoto, K. J . Synth. Org. Chem.
J pn. 1989, 47, 40-52. (c) Yorimitsu, H.; Oshima, K. In Radicals in
Organic Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Wein-
heim, 2001; Vol. 1, Chapter 1.2.
(12) (a) Anzalone, L.; Hirsch, J . A. J . Org. Chem. 1985, 50, 2128-
2133. (b) Tsuboi, S.; Muranaka, K.; Sakai, T.; Takeda, A. J . Org. Chem.
1986, 51, 4944-4946. (c) Curran, D. P.; Chang, C.-T. J . Org. Chem.
1989, 54, 3140-3157.
(13) Fujita, M.; Kitagawa, O.; Yamada, Y.; Izawa, H.; Hasegawa,
H.; Taguchi, T. J . Org. Chem. 2000, 65, 1108-1114.
(14) An ethanol solution of triethylborane was prepared according
to the reported procedure. See ref 10b.
79c
(CH2)4OH
81
26
84
63
79
69
82
CH2OH
CH2CH2COCH3
(CH2)3Br
(CH2)8COOCH3
(CH2)4OTHP
(CH2)3NPHd
cyclohexene
trans-4-octene
2-methyl-1-dodecene
2j
2k
2l
3a j
3a k
3a l
22 (54/46)c,e
10 (1/1)c,e
77c
2m
3a m
a
b
Ethanol solution (1.0 M). Air was added every 30 min.
c Additional triethylborane (0.50 mmol) was added 1 h after the
reaction started. NPH ) phthalimidyl group. e Diastereomer
d
ratios are in parentheses.
workup followed by silica gel column purification pro-
vided ethyl 4-bromodecanoate (3a a ) in 74% yield (Scheme
2). In contrast to the reaction in water, the reaction
proceeded sluggishly in benzene and dichloromethane (12
and 9%, respectively) under similar reaction conditions.
When the reaction mixture in water was kept strictly
under argon until concentration, poor conversion was
seen (<7%). An excess of 1a was crucial to obtain 3a a in
satisfactory yield.15 The reaction of stoichiometric 1a with
2a gave 3a a in only a 10% yield with stirring for 1.5 h.
Employing 5 equimolar amounts of 2a also resulted in a
miserable yield (19% based on 1a ). However, 3a a was
satisfactorily obtained in 71% yield upon treatment of a
mixture of 2a and 1.3 mol of 1a with triethylborane (0.50
mmol × 2) for 3 h. These observations suggest that the
rate-determining step in the chain propagation would be
the bromine atom-transfer step.
The results of the addition of 1a (5 equiv) to various
olefins in water are summarized in Table 1. A wide range
of functionalities in 2d -2j could survive under the
reaction conditions. Interestingly, waxy 1-docosene (2c)
also reacted with 1a in an aqueous medium, although
the mixture was cloudy during the reaction. Allyl alcohol
(2e) was not a good substrate. Internal double bonds 2k
and 2l were less reactive (entries 11 and 12). 1,1-
Disubstituted alkene could be employed to yield the
corresponding tertiary bromide 3a m .
Not only ethyl bromoacetate but also other reactive
bromides underwent radical addition (Table 2). Bromo-
malonate 1c was so reactive4 that the addition requires
only 1.5 equimolar amounts of 1c. Similar to bromo-
(15) Iodine atom-transfer addition of R-iodo-γ-butyrolactone in water
proceeded smoothly to yield the corresponding adduct. In this case,
an excess of alkene was used. See ref 3d.