Angewandte
Communications
Chemie
Angew. Chem. Int. Ed. 2005, 44, 6193 – 6196; Angew. Chem.
005, 117, 6349 – 6352.
3] For reviews, see: a) T. Dohi, Y. Kita, Chem. Commun. 2009,
073 – 2085; b) R. D. Richardson, T. Wirth, Angew. Chem. Int.
2
[
[
2
Ed. 2006, 45, 4402 – 4404; Angew. Chem. 2006, 118, 4510 – 4512;
c) M. S. Yusubov, V. V. Zhdankin, Mendeleev Commun. 2010, 20,
1
85 – 191.
4] a) Y. Li, D. P. Hari, M. V. Vita, J. Waser, Angew. Chem. Int. Ed.
016, 55, 4436 – 4454; Angew. Chem. 2016, 128, 4512 – 4531; b) J.
2
Waser, Top. Curr. Chem. 2016, 373, 187 – 222; c) N. Frꢁh, J.
Charpentier, A. Togni, Top. Curr. Chem. 2016, 373, 167 – 186;
d) J. Charpentier, N. Frꢁh, A. Togni, Chem. Rev. 2015, 115, 650 –
6
82; e) B. Olofsson, Top. Curr. Chem. 2016, 373, 135 – 166;
f) E. A. Merritt, B. Olofsson, Angew. Chem. Int. Ed. 2009, 48,
052 – 9070; Angew. Chem. 2009, 121, 9214 – 9234; g) K. Aradi,
9
B. L. Tꢂth, G. L. Tolnai, Z. Novꢃk, Synlett 2016, 27, 1456 – 1485;
h) M. S. Yusubov, A. V. Maskaev, V. V. Zhdankin, ARKIVOC
2011, 1, 370 – 409.
[
5] a) Y. Kita, K. Morimoto, M. Ito, C. Ogawa, A. Goto, T. Dohi, J.
Am. Chem. Soc. 2009, 131, 1668 – 1669; b) K. Morimoto, N.
Yamaoka, C. Ogawa, T. Nakae, H. Fujioka, T. Dohi, Y. Kita,
Org. Lett. 2010, 12, 3804 – 3807; see also c) B. Hu, W. H. Miller,
K. D. Neumann, E. J. Linstad, S. G. DiMagno, Chem. Eur. J.
Figure 1. DFT calculated potential energy surfaces for the reaction
ꢀ1
ꢀ
between 1a(OTf) and nitrite. Energies are measured in kJmol
omitted for clarity in B1 and B2, TS1–TS5, and C1 and C2.
. OTf
2015, 21, 6394 – 6398. For in situ formation of vinyliodonium salts
from iodine(III) see: d) T. Dohi, D. Kato, R. Hyodo, D.
suggested to proceed via an OꢀI intermediate followed by an
unusual [2,2] ligand coupling. The reaction has been extended
to a sequential one-pot transformation, where diaryliodonium
intermediates are generated from arenes and iodoarenes in
a highly regioselective fashion, and subsequently nitrated
with recovery of the iodoarene. Azidation also proved
possible using the same novel concept, where iodine(III)
reagents with two carbon ligands are formed in situ from
iodine(I) and subsequently intermolecularly reacted with
nucleophiles. This feature constitutes an important step
towards catalytic reactions with such hypervalent iodine
reagents.
Yamashita, M. Shiro, Y. Kita, Angew. Chem. Int. Ed. 2011, 50,
3
784 – 3787; Angew. Chem. 2011, 123, 3868 – 3871.
6] a) D. Lubriks, I. Sokolovs, E. Suna, J. Am. Chem. Soc. 2012, 134,
5436 – 15442; b) I. Sokolovs, D. Lubriks, E. Suna, J. Am. Chem.
[
1
Soc. 2014, 136, 6920 – 6928; c) N. R. Deprez, D. Kalyani, A.
Krause, M. S. Sanford, J. Am. Chem. Soc. 2006, 128, 4972 – 4973;
d) F. Xie, Z. Zhang, X. Yu, G. Tang, X. Li, Angew. Chem. Int. Ed.
2015, 54, 7405 – 7409; Angew. Chem. 2015, 127, 7513 – 7517.
[7] The oxidative and often strongly acidic conditions required for
synthesis of these reagents from iodine(I) have so far proved
incompatible to combine with their use in intermolecular atom
transfer reactions. For in situ formation and use of such reagents
from iodine(I) in intramolecular reactions, see: a) A. Rodrꢄguez,
W. J. Moran, Org. Lett. 2011, 13, 2220 – 2223 (a vinyliodonium
salt); b) T. Dohi, T. Nakae, Y. Ishikado, D. Kato, Y. Kita, Org.
Biomol. Chem. 2011, 9, 6899 – 6902 (a vinyliodonium salt); c) F.
Hong, Y. Chen, B. Lu, J. Cheng, Adv. Synth. Catal. 2016, 358,
Acknowledgements
353 – 357 (an iodonium ylide).
[
[
8] See the Supporting Information for details.
9] a) N. Ono, The Nitro Group in Organic Synthesis Wiley-VCH,
New York, 2001; b) K.-S. Ju, R. E. Parales, Microbiol. Mol. Biol.
Rev. 2010, 74, 250 – 272.
We thank Erik Lindstedt for initial experiments, and Prof. P.-
O. Norrby for mechanistic discussions. This research was
conducted using the resources of High Performance Comput-
ing Center North (HPC2N). The Swedish Research Council
[
10] U. Kloeckner, B. J. Nachtsheim, Chem. Commun. 2014, 50,
0485 – 10487.
(
621-2011-3608 and 2015-04404) and Estonian Research
1
Council (PUTJD114) are kindly acknowledged for financial
support.
[11] F. Xie, Z. Qi, X. Li, Angew. Chem. Int. Ed. 2013, 52, 11862 –
11866; Angew. Chem. 2013, 125, 12078 – 12082.
[
12] B. P. Fors, S. L. Buchwald, J. Am. Chem. Soc. 2009, 131, 12898 –
2899.
1
Keywords: arylation · density functional calculations ·
hypervalent compounds · oxidation · reaction mechanisms
[
13] a) G. K. S. Prakash, C. Panja, T. Mathew, V. Surampudi, N. A.
Petasis, G. A. Olah, Org. Lett. 2004, 6, 2205 – 2207; b) X.-F. Wu, J.
Schranck, H. Neumann, M. Beller, Chem. Commun. 2011, 47,
12462 – 12463; c) N. Chatterjee, D. Bhatt, A. Goswami, Org.
Biomol. Chem. 2015, 13, 4828 – 4832.
[
14] a) F. M. Beringer, A. Brierley, M. Drexler, E. M. Gindler, C. C.
Lumpkin, J. Am. Chem. Soc. 1953, 75, 2708 – 2712; b) J. J.
Lubinkowski, M. Gomez, J. L. Calderon, W. E. McEwen, J. Org.
Chem. 1978, 43, 2432 – 2435; c) G. A. Olah, T. Sakakibara, G.
Asensio, J. Org. Chem. 1978, 43, 463 – 468; d) V. V. Grushin,
M. M. Kantor, T. P. Tolstaya, T. M. Shcherbina, Bull. Acad. Sci.
USSR Div. Chem. Sci. 1984, 33, 2130 – 2135.
[
1] a) “Hypervalent Iodine Chemistry” (Ed.: T. Wirth): Top. Curr.
Chem. 2016, 373; b) A. Yoshimura, V. V. Zhdankin, Chem. Rev.
2016, 116, 3328 – 3435; c) V. V. Zhdankin, Hypervalent Iodine
Chemistry, Wiley, Chichester, 2013.
[
2] a) M. Ochiai, Y. Takeuchi, T. Katayama, T. Sueda, K. Miyamoto,
J. Am. Chem. Soc. 2005, 127, 12244 – 12245; b) T. Dohi, A.
Maruyama, M. Yoshimura, K. Morimoto, H. Tohma, Y. Kita,
[15] a) M. Bielawski, M. Zhu, B. Olofsson, Adv. Synth. Catal. 2007,
349, 2610 – 2618; b) M. Bielawski, B. Olofsson, Chem. Commun.
4
ꢀ 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2016, 55, 1 – 6
These are not the final page numbers!