544
X. Qi et al.
directing trends of the chlorine and bromine substituents. J. Chem. Soc., Perkin
Trans. 2 1994, 479–484; (c) Suzuki, H.; Mori, T.; Maeda, K. Ozone-mediated
reaction of polychlorobenzenes and some related halogeno compounds with
nitrogen dioxides: a novel non-acid methodology for the selective mononitration
of moderately deactivated aromatic systems. Synthesis 1994, 841–845;
(d) Suzuki, H.; Tomaru, J.; Murashima, T. Iron(III)-catalysed nitration of non-
activated and moderately activated arenas with nitrogen dioxide-molecular
oxygen under neutral conditions. J. Chem. Soc., Perkin Trans. 1 1996,
2385–2389; (e) Barrett, A. G. M.; Braddock, D. C.; Ducray, R.;
Mckinnell, R. M.; Waller, F. J. Lanthanide triflate and triflide catalyzed atom
economic nitration of fluoro arenes. Synlett 2000, 57–59; (f) Waller, F. J.;
Barrett, A. G. M.; Braddock, D. C.; Ramprasad, D. Lanthanide(III) triflates as
recyclable catalysts for atom economic aromatic nitration. Chem. Commun.
1997, 613–615; (g) Delaude, L.; Laszlo, P.; Smith, K. Heightened selectivity in
aromatic nitrations and chlorinations by the use of sokid supports and catalysts.
Acc. Chem. Res. 1993, 26, 607–613; (h) Gigante, B.; Prazeres, A. O.; Marcelo-
Curto, M. J. Mild and selective nitration by claycop. J. Org. Chem. 1995, 60,
3445–3447; (i) Kwok, T. J.; Jayasuriya, K.; Damavarapu, R.; Brodman, B. W.
Application of H-ZSM-5 zeolite for regioselective mononitration of toluene.
J. Org. Chem. 1994, 59, 4939–4942; (j) Vessena, D.; Kogelbauer, A.; Prins, R.
Potential routes for the nitration of toluene and nitrotoluene with solid acids.
Catal Today 2000, 60, 275–287; (k) Dagade, S. P.; Waghmode, S. B.;
Kadam, V. S.; Dongare, M. K. Vapor phase nitration of toluene using dilute
nitric acid and molecular modeling studies over beta zeolite. Appl. Catal., A
2002, 226, 49–61; (l) Peng, X.; Suzuki, H.; Lu, C. Zeolite-assisted nitration of
neat toluene and chlorobenzene with a nitrogen dioxide/molecular oxygen
system: remarkable enhancement of para-selectivity. Tetrahedron Lett. 2001,
42, 4357–4359.
2. See, for example, (a) Sheldon, R. Catalytic reactions in ionic liquids. Chem.
Commun. 2001, 2399–2407 (b) Dupont, J.; Souza, R. F.; Suarez, P. A. Z. Ionic
liquid (molten salt) phase organometallic catalysis. Chem. Rev. 2002, 102,
3667–3692; (c) Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L. T.; Weaver, K. J.
Novel Brøsted acidic ionic liquids and their use as dual solvent-catalysts. J. Am.
Chem. Soc. 2002, 124, 5962–5963; (d) Gui, J. Z.; Ban, J. Y.; Cong, X. H.;
Zhang, X. T.; Sun, Z. L. Selective alkylation of phenol with tert-butyl alcohol
catalyzed by Brøsted acidic imidazolium salts. J. Mol. Catal. A 2005, 225,
27–31; (e) Joseph, T.; Sahoo, S.; Halligudi, S. B. Brøsted acidic ionic liquids: a
green, efficient and reusable catalyst system and reaction medium for Fischer ester-
ification. J. Mol Catal. A 2005, 234, 107–110; (f) Angueira, E. J.; White, M. G.
Arene carbonylation in acidic, chloro aluminate ionic liquids. J. Mol. Catal. A
2005, 227, 51–58; (g) Li, D. M.; Shi, F.; Peng, J. J.; Guo, S.; Deng, Y. Q. Appli-
cation of functional ionic liquids possessing two adjacent acid sites for acetaliza-
tion of aldehydes. J. Org. Chem. 2004, 69, 3582–3585.
3. Swatloski, R.; Holbrey, J.; Memon, S.; Caldwell, G.; Caldwell, K.; Rogers, R.
Using Caenorhabditis elegans to probe toxicity of 1-alkyl-3-methylimidazolium
chloride based ionic liquids. Chem. Commun. 2004, 668–669.
4. Du, Z. Y.; Li, Z. P.; Guo, S.; Zhong, J.; Zhu, L. Y.; Deng, Y. Q. Investigation of
physicochemical properties of lactam-based Brøsted acidic ionic liquids. J. Phys.
Chem. B 2005, 109, 19542–19546.
5. Qiao, K.; Yokoyama, C. Nitration of aromatic compounds with nitric acid
catalyzed by ionic liquids. Chem. Lett. 2004, 33, 808–809.