K.S. Shin et al. / Applied Catalysis A: General 413–414 (2012) 170–175
175
are stirred, as a result, the catalytic efficiency of the Fe O /SiO @Ag
[10] Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D: Appl. Phys. 36 (2003)
R167–R181.
3
4
2
nanoparticles decreases.
. Conclusions
In the present study, Fe O /SiO @Ag beads are prepared and
[
[
11] P.N.L. Lens, M.A. Hemminga, Biodegradation 9 (1998) 393–409.
12] J. Giri, A. Ray, S. Dasgupta, D. Datta, D. Bahadur, Bio-Med. Mater. Eng. 13 (2003)
387–399.
4
[
13] T.-J. Yoon, J.S. Kim, B.G. Kim, K.N. Yu, M.-H. Cho, J.-K. Lee, Angew. Chem. Int. Ed.
44 (2005) 1068–1071.
3
4
2
[14] Z. Liao, H. Wang, R. Lv, P. Zhao, X. Sun, S. Wang, W. Su, R. Niu, J. Chang, Langmuir
27 (2011) 3100–3105.
their application for the catalytic reduction of nitrophenols in
the presence of sodium borohydride is examined. In order to
avoid the aggregation of the metal particles, silica was coated on
[
15] J.R. Weertman, in: C.C. Koch (Ed.), Nanostructured Materials: Processing,
Properties and Applications, William Andrews Publishing, Norwich, NY,
2002.
Fe O nanoparticles using the modified Stöber method. Then silver
[16] W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424 (2003) 824–830.
[17] C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles,
John Wiley & Sons, New York, 1998.
3
4
was deposited onto Fe O /SiO nanoparticles simply by soaking
3
4
2
them in ethanolic solutions of AgNO3 and butylamine and their
characteristics are examined by TEM, XRD, UV–vis, and magne-
tometer analyses. With this simple and surfactant-free fabrication
of Fe O /SiO @Ag nanoparticles, we can avoid contamination in the
[
18] S.K. Gray, T. Kupka, Phys. Rev. B 68 (2003) 0454151–04541511.
[19] J.M. Oliva, S.K. Gray, Chem. Phys. Lett. 379 (2003) 325–331.
[20] S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Kowel, A.A.G.
Requicha, Nat. Mater. 2 (2003) 229–232.
3
4
2
[
[
21] A.J. Haes, R.P. Van Duyne, J. Am. Chem. Soc. 124 (2002) 10596–10604.
22] S. Eustis, M.A. El-Sayed, Chem. Soc. Rev. 35 (2006) 209–217.
final product, which makes them suitable for further catalytic appli-
cations. The catalytic activity of Fe O /SiO @Ag nanoparticles thus
[23] T.R. Jensen, M.D. Malinsky, C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 104
2000) 10549–10556.
3
4
2
(
prepared was investigated in the reduction reaction of nitrophenols
2-NP, 3-NP and 4-NP) to aminophenols by NaBH . A comparative
[
24] A.J. Haes, S. Zou, G.C. Schatz, R.P. Van Duyne, J. Phys. Chem. B 108 (2004)
6961–6968.
(
4
study revealed that the rate of reduction follows the order, 4-NP>2-
NP>3-NP. Since the magnetic particles are readily recovered from
the solution phase mixture without centrifugation and/or filtering,
[25] M.D. Malinsky, K.L. Kelly, G.C. Schatz, R.P. Van Duyne, J. Am. Chem. Soc. 123
2001) 1471–1482.
26] K. Kim, J.-Y. Choi, H.B. Lee, K.S. Shin, ACS Appl. Mater. Interfaces 2 (2010)
872–1878.
[27] L. Wang, J. Bai, Y. Li, Y. Huang, Angew. Chem. Int. Ed. 47 (2008) 2439–2442.
(
[
1
Fe O /SiO @Ag nanoparticles, separated from the product using a
3
4
2
[28] Z. Xu, Y. Hou, S. Sun, J. Am. Chem. Soc. 129 (2007) 8698–8699.
[29] S. Guo, S. Dong, E. Wang, Chem. Eur. J. 15 (2009) 2416–2424.
[30] K. Kim, H.B. Lee, Y.M. Lee, K.S. Shin, Biosens. Bioelectron. 24 (2009)
1864–1869.
neodium magnet, could be recycled a number of times.
Acknowledgement
[
31] K. Kim, H.B. Lee, J.-Y. Choi, K.S. Shin, ACS Appl. Mater. Interfaces 3 (2011)
3
24–330.
This work was supported by National Research Founda-
tion (NRF) of Korea Grant funded by the Korean Government
[
32] L. Li, E.S.G. Choo, X. Tang, J. Ding, J. Xue, Acta Mater. 58 (2010) 3825–3831.
[33] S. Mitchell, Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., Wiley-
Interscience, NY, 1992.
(
MEST) (Nos. 2011-0001218, 2011-0006737, 2010-0019204, 0409-
0100172, and 2009-0072467).
[
34] M.J. Vaidya, S.M. Kulkarni, R.V. Chaudhari, Org. Process Res. Dev. 7 (2003)
02–208.
2
2
[
[
[
[
[
35] T. Swathi, G. Buvaneswari, Mater. Lett. 62 (2008) 3900–3902.
36] K. Hayakawa, T. Yoshimura, K. Esumi, Langmuir 19 (2003) 5517–5521.
37] J. Ge, T. Huynh, Y. Hu, Y. Yin, Nano Lett. 8 (2008) 931–934.
38] M.H. Rashid, T.K. Mandal, J. Phys. Chem. C 111 (2007) 16750–16760.
39] M.H. Rashid, R.R. Bhattacharjee, A. Kotal, T.K. Mandal, Langmuir 22 (2006)
References
[1] W. Gao, S. Sattayasamitsathit, K.M. Manesh, D. Weihs, J. Wang, J. Am. Chem.
Soc. 132 (2010) 14403–14405.
7
141–7143.
40] H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Angew. Chem. Int. Ed. 44 (2005)
782–2785.
[
[
2] C. Xu, S. Sun, Polym. Int. 56 (2007) 821–826.
3] G. Leem, S. Sarangi, S. Zhang, I. Rusakova, A. Brazdeikis, D. Litvinov, T.R. Lee,
Cryst. Growth Des. 9 (2009) 32–34.
[
2
[
[
[
41] L. Xia, N.H. Kim, K. Kim, J. Colloid Interface Sci. 306 (2007) 50–55.
42] L.S. Birks, H. Friedman, J. Appl. Phys. 17 (1946) 687–692.
43] W. Zhang, L. Gai, Z. Li, H. Jiang, W. Ma, J. Phys. D: Appl. Phys. 41 (2008)
[
[
[
4] J. Park, J. Joo, S.G. Kwon, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed. 46 (2007)
4
630–4660.
5] J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang,
T. Hyeon, Nat. Mater. 3 (2004) 891–895.
6] J.R. Davis, Nickel, Cobalt, and there Alloys, ASM International, Materials Park,
225001–225006.
[
[
44] M. Tomozawa, J.-W. Hong, S.-R. Ryu, J. Non-Cryst. Solids 351 (2005) 1054–1060.
45] A. Balamurugan, G. Sockalingum, J. Michel, J. Fauré, V. Banchet, L. Wortham,
S. Bouthors, D. Laurent-Maquin, G. Balossier, Mater. Lett. 60 (2006)
2
000.
[
[
[
7] D.-H. Chen, C.-H. Hsieh, J. Mater. Chem. 12 (2002) 2412–2415.
8] K.S. Shin, J.-Y. Choi, C.S. Park, H.J. Jang, K. Kim, Catal. Lett. 133 (2009) 1–7.
9] X. Wang, H. Ji, X. Zhang, H. Zhang, X. Yang, J. Mater. Sci. 45 (2010) 3981–3989.
3752–3757.
[
46] R. He, X. Qian, J. Yin, Z. Zhu, J. Mater. Chem. 12 (2007) 3783–3786.