R.K. Afshar et al. / Journal of Inorganic Biochemistry 99 (2005) 1458–1464
1463
Acknowledgments
Papain
SH
+
NO
Experimental assistance from Dr. Kaushik Ghosh,
Aura A. Eroy-Reveles and Pilgrim J. Jackson is grate-
fully acknowledged.
N
N
N
Mn
N
Papain
SNO
N
hν
O
+
References
3
Scheme 1. S-nitrosylation of papain by [(PaPy )Mn(NO)] .
[
[
1] L.J. Ignarro, in: Nitric Oxide: Biology and Pathobiology,
Academic Press, San Diego, 2000.
2] L.J. Ignarro, F. Murad, in: Nitric Oxide: Biochemistry, Molecular
Biology, and Therapeutic Implications, Academic Press, San
Diego, 1995.
3] R.F. Furchgott, J.V. Zawadzki, Nature 288 (1980) 373–376.
4] J. Lancaster, in: Nitric Oxide: Principles and Actions, Academic
Press, San Diego, 1996.
5] P. Lane, S.S. Gross, Semin. Nephrol. 19 (1999) 215–229.
6] M. Feelisch, J.S. Stamler (Eds.), Methods in Nitric Oxide
Research, Wiley, Chichester, England, 1996.
7] H.H.H.W. Schmidt, U. Walter, Cell 78 (1994) 919–925.
8] J. Zhang, S.H. Snyder, Annu. Rev. Pharmacol. Toxicol. 35 (1995)
213–233.
9] K.E. Loke, P.I. McConnell, J.M. Tuzman, E.G. Shesely, C.J.
Smith, C.J. Stackpole, C.I. Thomson, G. Kaley, M.S. Wolin,
T.H. Hintze, Circ. Res. 84 (1999) 840–845.
product as well as the excess salts. The electrospray mass
spectra of native papain (purified by the same HPLC
method) and the nitrosylated papain fraction were ob-
tained in the positive ion mode and the m/z values of
the parent ions were calculated by the MaxEnt program
by Waters. As shown in the top panel of Fig. 4, papain
exhibits its molecular ion peak at m/z = 23,429. Crystal-
lographic results have assigned a molecular weight of
[
[
[
[
2
3,406 to pure papain [41]. The difference of 23 m/z cor-
[
[
+
responds to a Na ion that associates with papain in our
mass spectrum. The bottom panel of Fig. 4 displays a
molecular ion peak at m/z = 23,459 and corresponds
to the papain–SNO adduct (a difference of 30 mass
units). The peak at m/z = 23,459 was also obtained
when papain was incubated with GSNO (for 30 min)
and the reaction product was analyzed by mass spec-
trometry following purification by HPLC. In the latter
case, the mass spectrum showed peaks for both the pa-
painS–NO (fraction with retention time 40.7 min) and
papainS–SG (fraction with retention time 37.2 min) at
m/z = 23,459 and 23,735, respectively. Identification of
the papain–SNO adduct clearly demonstrates that inhi-
bition of papain by 1 under light occurs due to the nit-
rosylation of the active site cysteine (Scheme 1).
[
[
10] E. Clementi, G.C. Brown, N. Foxwell, S. Moncada, Proc. Natl.
Acad. Sci. USA 96 (1999) 1559–1562.
[11] Z. Gu, M. Kaul, B. Yan, S.J. Kridel, J. Cui, A. Strongin, J.W.
Smith, R.C. Liddington, S.A. Lipton, Science 297 (2002) 1186–
1
190.
[
12] K.L. Davis, E. Martin, I.V. Turko, F. Murad, Annu. Rev.
Pharmacol. Toxicol. 41 (2001) 203–236.
13] E.J. Nelson, J. Connolly, P. McArthur, Biol. Cell 95 (2003) 3–8.
[14] J.S. Stamler, Cell 78 (1994) 931–936.
15] J.S. Stamler, E.J. Toone, S.A. Lipton, N.J. Sucher, Neuron 18
1997) 691–696.
[
[
(
[
16] J.S. Stamler, D.I. Simon, J.A. Osborne, M.E. Mullins, O. Jaraki,
T. Michel, D.J. Singel, J. Loscalzo, Proc. Natl. Acad. Sci. USA 89
(
1992) 444–448.
[
[
[
17] D.I. Simon, M.E. Mullins, L. Jia, B. Gaston, D.J. Singel, J.S.
Stamler, Proc. Natl. Acad. Sci. USA 93 (1996) 4736–4741.
18] M. Kashiba-Iwatsuki, M. Miyamoto, M. Inoue, Arch. Biochem.
Biophys. 345 (1997) 237–242.
19] M.W.J. Cleeter, J.M. Cooper, V.M. Darley-Usmar, S. Moncada,
A.H.V. Schapira, FEBS Lett. 345 (1994) 50–54.
4
. Conclusions
Inactivation of papain via S-nitrosylation has been
achieved with [(PaPy )Mn(NO)](ClO ) (1), a {Mn–
3
4
6
NO} nitrosyl. The inhibition of the enzyme is achieved
only under visible light (tungsten lamp, 50 W) since the
nitrosyl is photosensitive and releases NO under illumi-
nation. The photoreleased NO inactivates papain most
possibly by nitrosylating Cys25 of papain. Unlike other
thiol-containing NO donors that afford mixed disulfides
[20] T.S. Lai, A. Hausladen, T.F. Slaughter, J.P. Eu, J.S. Stamler,
C.S. Greenberg, Biochemistry 40 (2001) 4904–4910.
[
21] M.D. Percival, M. Ouellet, C. Campagnolo, D. Claveau, C. Li,
Biochemistry 38 (1999) 13574–13583.
[
[
22] S. Mohr, J.S. Stamler, B. Brune, FEBS Lett. 348 (1994) 223–227.
23] J. Sun, L. Xu, J.P. Eu, J.S. Stamler, G. Meissner, J. Biol. Chem.
278 (2003) 8184–8189.
[
[
24] R. Gopalakrishna, Z.H. Chen, U. Gundimeda, J. Biol. Chem. 268
(
1
PapainS–SR) as the final products, the clean reaction of
with papain produces only the papain–SNO adduct.
(
1993) 27180–27185.
25] J.S. Stamler, D.I. Simon, O. Jakari, J.A. Osborne, S. Francis,
M.E. Mullins, D.J. Singel, J. Loscalzo, Proc. Natl. Acad. Sci.
USA 89 (1992) 8087–8091.
The papain–SNO adduct has been purified by HPLC
and identified by mass spectrometry (shift of 30 mass
units in papain–SH versus papain–SNO). The results
clearly demonstrate that the inactivation of papain, a
cysteine protease, with 1 results from S-nitrosylation
and this inactivation process can be controlled with light.
The extent of inhibition of papain is directly propor-
tional to the concentration of 1 and the exposure time.
[26] S.A Henderson, P.H. Lee, E.E. Aeberhard, J.W. Adams, L.J.
Ignarro, W.J. Murphy, M.P. Sherman, J. Biol. Chem. 269 (1994)
2
5239–25242.
27] P.K. Sehajpal, A. Basu, J.S. Ogiste, H.M. Lander, Biochemistry
8 (1999) 13407–13413.
[
[
3
28] R.V. Talanian, K.D. Brady, V.L. Cryns, J. Med. Chem. 43 (2000)
3351–3371.