134
S. KOCABIYIK and I˙ . O¨ ZDEM˙IR
proteinase from a strain of the archaebacterium Desul-
ꢀ
for protein determination based on difference in absorb-
ance at 235 and 280 nm. Anal. Biochem., 109, 156–159
(1980).
forocoocus growing at 88 C. Biochem. J., 247, 121–133
1987).
(
8
)
)
Guagliardi, A., Cerchia, L., and Rossi, M., An intra-
cellular protease of the Crenarchaeon Sulfolobus sol-
fataricus, which has sequence similarity to eukaryotic
peptidases of the CD clan. Biochem. J., 368, 357–363
22) Madowski, G. S., and Rampsy, M. L., Gelatin zymog-
raphy. In ‘‘Protein Structure: A Practical Approach’’, ed.
Creighton, T. E., Oxford University Press, New York,
pp. 21–23 (1997).
23) Laemmli, U. K., Cleavage of structure proteins the
assembly of the head bacteriophage T4. Nature, 277,
680–685 (1970).
24) Manachini, P. L., Fortina, M. G., and Parini, C.,
Thermosable alkaline protease produced by Bacillus
thermoruber, a new species of Bacillus. Appl. Microbiol.
Biotechnol., 28, 409–413 (1988).
25) Strongin, A. Y., Abramov, L. S., Gorodetsky, D. I.,
Ermakova, L. A., Belyanova, L. P., and Stepanov, V. M.,
Intracellular serine protease of Bacillus subtilis: se-
quence homology with extracellular subtilisins. J.
Bacteriol., 133, 1401–1411 (1978).
(
2002).
9
Burluni, N., Magnani, P., Villa, A., Macchi, F., Tortota,
P., and Guerritore, A., A heat-stable serine proteinase
from the extreme thermophilic archaebacterium Sulfolo-
bus solfataricus. Biochim. Biophys. Acta, 1122, 283–292
(
1992).
1
0) Dib, R., Chobert, J., Dalgalarrondo, M., Barbier, G., and
Haertl e´ , M., Purification, molecular properties and
specificity of a thermoactive and thermostable proteinase
from Pyrococcus abyssi, strain st 549, hyperthermophilic
archaea from deep-sea hydrothermal ecosystem. FEBS
Lett., 431, 279–284 (1998).
1
1) Klingeberg, M., Hashawa, F., and Antranikian, G.,
Properties of extremely thermostable proteases from
anaerobic hyperthermophilic bacteria. Appl. Environ.
Microbiol., 34, 715–719 (1991).
26) Gusek, T. W., and Kinsella, J. E., Purification and
characterization of the heat-stable serine protease from
Thermomonospora fusca YX. Biochem. J., 246, 511–517
(1987).
1
2) Klingeberg, M., Galunsky, B., Sjoholm, C., Kasche, V.,
and Antranikian, G., Purification and properties of a
highly thermostable, sodium dodecyl sulfate-resistant
and stereospecific proteinase from the extremely ther-
mophilic archaeon Thermococcus stetteri. Appl. Environ.
Microbiol., 61, 3098–3104 (1995).
3) Kannan, Y., Koga, Y., Inoue, Y., Haruki, M., Takagi,
M., Imanaka, T., Morikawa, M., and Kanaya, S., Active
subtilisin-like protease from a hyperthermophilic archae-
on in a form with a putative prosequence. Appl. Environ.
Microbiol., 67, 2445–2452 (2001).
4) Ward, D. E., Shockley, K. R., Chang, L. S., Levy, R. D.,
Michel, J. K., Conners, S. B., and Kelly, R. M.,
Proteolysis in hyperthermophilic microorganisms. Arch-
aea, 1, 63–74 (2002).
5) Snowden, L. J., Blumentals, I. I., and Kelly, R. M.,
Regulation of proteolytic activity in the hyperthermo-
phile Pyrococcus furiosus. Appl. Environ. Microbiol.,
27) Kocabiyik, S., and Erdem, B., Intracellular alkaline
proteases produced by thermoacidophiles: detection of
protease heterogeneity by gelatin zymography and
polymerase chain reaction (PCR). Bioresource Technol.,
84, 29–33 (2002).
28) Litthauer, D., Louw, C. H., and Toit, P. J. D., Geo-
trichum candidum P-5 produces an intracellular serine
protease resembling cyhmotrypsin. Int. J. Biochem. Cell
Biol., 28, 1123–1130 (1996).
1
29) Sheehan, S. M., and Switzer, R. L., Intracellular serine
protease-4, a new intracellular serine protease activity
from B. subtilis. Arch. Microbiol., 156, 186–191 (1991).
30) Scholz, S., Sonnenbichler, J., Schafler, W., and Hensel,
1
1
1
1
0
R., Di-myo-inositol-,1 -phosphate: a new inositol phos-
phate isolated from Pyrococcus woesei. FEBS Lett., 306,
239–242 (1992).
31) Bode, W. E., Papamokos, E., and Musil, D., The high
resolution X-ray crystal structure of the complex formed
between subtilisins carlsberg and eglin C, elastase
inhibitor from the leach Hirudo medicinalis: structural
analysis, subtilisin structure and interface geometry. Eur.
J. Biochem., 166, 673–692 (1987).
58, 1134–1141 (1992).
6) Kelly, R. M., and Adams, M. W. W., Metabolism in
hyperthermophilic microorganisms. Antonie van Leeu-
wenhoek Int. J. Gen. Mol. Microbiol., 66, 247–270
(
1994).
32) Bott, R., Ulysch, M., Kossiakoff, A., Graycer, T., Kate,
B., and Power, S., The three-dimensional structure of
7) Segerer, A., Longworthy, T. A., and Stetter, K. O.,
Thermplasma acidophilum and Thermoplasma volcani-
um sp. nov. from solfatara fields. System. Appl. Micro-
biol., 10, 161–171 (1988).
8) Robb, F. T., and Place, A. R., ‘‘Archaea, A Laboratory
Manual’’, Cold Spring Harbor Laboratory Press, New
York (1995).
ꢁ
Bacillus amyloliquefaciens subtilisin at 1.8 A and an
analysis of the structural consequences of peroxide
inactivation. J. Biol. Chem., 269, 17448–17453 (1988).
33) Gros, P., Kalk, K. H., and Hol, W. G., Calcium binding
to thermitase: crystallographic studies of thermitase at 0,
5, and 100 mM calcium. J. Biol. Chem., 266, 2953–2961
(1991).
34) Hutalidok-Towatana, N., Painupong, A., and
Suntinanalert, P., Purification and characterization of
an extracellular protease from alkaliphilic and thermo-
pholic Bacillus sp. PS719. J. Biosci. Bioeng., 87, 581–
587 (1999).
1
1
2
2
9) Anson, M. L., The estimation of pepsin, trypsin, papain
and cathepsin with hemoglobin. J. Gen. Physiol., 22, 79–
89 (1938).
0) Foltman, B., Szecsi, P. B., and Tarasova, N. I., Detection
of proteases by clotting of casein after gel electro-
phoresis. Anal. Biochem., 146, 353–360 (1985).
1) Whitaker, J. R., and Granum, P. E., An absolute method