Paper
Catalysis Science & Technology
Acknowledgements
Dinescu, X. Dai, R. M. Palomino, F. W. Heinemann, T. R.
Cundari and T. H. Warren, Angew. Chem., Int. Ed.,
2008, 47, 9961–9964; (c) S. Kundu, E. Miceli, E. Farquhar,
F. F. Pfaff, U. Kuhlmann, P. Hildebrandt, B. Braun, C.
Greco and K. Ray, J. Am. Chem. Soc., 2012, 134,
14710–14713; (d) F. Dielmann, D. M. Andrada, G. Frenking
and G. Bertrand, J. Am. Chem. Soc., 2014, 136, 3800–3802;
(e) T. Corona, L. Ribas, M. Rovira, E. R. Farquhar, X.
Ribas, K. Ray and A. Company, Angew. Chem., Int. Ed.,
2016, 55, 14005–14008; ( f ) A. Bakhoda, Q. Jiang, J. A.
Bertke, T. R. Cundari and T. H. Warren, Angew. Chem., Int.
Ed., 2017, 56, 6426–6430.
This research was financially supported by Imperial College
London, the Engineering and Physical Sciences Research
Council (EPSRC) (EP/K030760/1), the CERCA Programme
(Generalitat de Catalunya) and MINECO (grant CTQ2017-
87792-R and Severo Ochoa Excellence Accreditation 2014-2018
SEV-2013-0319). BZ acknowledges SNF for a travel grant (#
PS1SKP2-168439) and DVE thanks MECD for a doctoral fel-
lowship. Lalita Radtanajiravong is sincerely acknowledged for
carrying out some final experiments.
13 (a) R. T. Gephart III and T. H. Warren, Organometallics,
2012, 31, 7728–7752; (b) M. M. Díaz-Requejo and P. J. Pérez,
Chem. Rev., 2008, 108, 3379–3394; (c) P. Müller and C. Fruit,
Chem. Rev., 2003, 103, 2905–2919.
14 (a) P. Brandt, M. J. Sodergren, P. G. Andersson and P. O.
Norrby, J. Am. Chem. Soc., 2000, 122, 8013–8020; (b) P.
Comba, C. L. Lang, C. L. de Laorden, A. Muruganantham, G.
Rajaraman, H. Wadepold and M. Zajaczkowski, Chem. – Eur.
J., 2008, 14, 5313–5328; (c) K. P. Hou, D. A. Hrovat and X. G.
Bao, Chem. Commun., 2015, 51, 15414–15417.
15 T. R. Cundari, A. Dinescu and A. B. Kazi, Inorg. Chem.,
2008, 47, 10067–10072.
16 L. Maestre, W. M. C. Sameera, M. M. Diaz-Requejo, F.
Maseras and P. J. Perez, J. Am. Chem. Soc., 2013, 135,
1338–1348.
17 M. R. Rodriguez, A. Beltran, A. L. Mudarra, E. Alvarez, F.
Maseras, M. M. Diaz-Requejo and P. J. Perez, Angew. Chem.,
Int. Ed., 2017, 56, 12842–12847.
18 E. Haldon, M. Besora, I. Cano, X. C. Cambeiro, M. A.
Pericas, F. Maseras, M. C. Nicasio and P. J. Perez, Chem. –
Eur. J., 2014, 20, 3463–3474.
19 M. Besora, A. A. C. Braga, W. M. C. Sameera, J. Urbano,
M. R. Fructos, P. J. Perez and F. Maseras, J. Organomet.
Chem., 2015, 784, 2–12.
20 B. Zelenay, R. Frutos-Pedreño, J. Markalain-Barta, E. Vega-
Isa, A. J. P. White and S. Díez-González, Eur. J. Inorg. Chem.,
2016, 4649–4658.
Notes and references
1 S. A. Lawrence, Amines: Synthesis, Properties and
Applications, Cambridge University Press, Cambridge, 2004.
2 (a) P. Roose, K. Eller, E. Henkes, R. Rossbacher and H.
Höke, Amines, Aliphatic. Ullmann's Encyclopedia of Industrial
Chemistry, 2015, pp. 1–55; (b) P. F. Vogt and J. J. Gerulis,
Amines, Aromatic. Ullmann's Encyclopedia of Industrial
Chemistry, 2000; (c) K. Drauz, I. Grayson, A. Kleemann, H.-P.
Krimmer, W. Leuchtenberger and C. Weckbecker, Amino
Acids. Ullmann's Encyclopedia of Industrial Chemistry, 2007.
3 (a) S. Bräse, C. Gil, K. Knepper and V. Zimmermann, Angew.
Chem., Int. Ed., 2005, 44, 5188–5240; (b) E. F. V. Scriven and
K. Turnbull, Chem. Rev., 1988, 88, 297–368.
4 H. Staudinger and J. Meyer, Helv. Chim. Acta, 1919, 2, 635–646.
5 (a) C. I. Schilling, N. Jung, M. Biskup, U. Schepers and S.
Bräse, Chem. Soc. Rev., 2011, 40, 4840–4871; (b) S. Liu and
K. J. Edgar, Biomacromolecules, 2015, 16, 2556–2571.
6 A catalytic version on the Staudinger reaction still requires
an excess of hydride source and harsher reaction
conditions, see: H. A. van Kalkeren, J. J. Bruins, F. P. J. T.
Rutjes and F. L. van Delft, Adv. Synth. Catal., 2012, 354,
1417–1421.
7 S. Ahammed, A. Saha and B. C. Ranu, J. Org. Chem.,
2011, 76, 7235–7239; For a more recent and promising
heterogeneous system, see: Á. Georgiádes, S. B. Ötvös and F.
Fülöp, Adv. Synth. Catal., 2018, 360, 1841–1849.
8 (a) Y. Xia, W. Li, F. Qu, Z. Fan, X. Liu, C. Berro, E. Rauzy and
L. Peng, Org. Biomol. Chem., 2007, 5, 1695–1701; (b) Y. A.
Cho, D.-S. Kim, H. R. Ahn, B. Canturk, G. A. Molander and J.
Ham, Org. Lett., 2009, 11, 4330–4333; (c) Y. Goriya and C. V.
Ramana, Tetrahedron, 2010, 66, 7642–7650.
9 J. T. Markiewicz, O. Wiest and P. Helquist, J. Org. Chem.,
2010, 75, 4887–4890.
10 H. Peng, K. H. Dornevil, A. B. Draganov, W. Chen, C. Dai,
W. H. Nelson, A. Liu and B. Wang, Tetrahedron, 2013, 69,
5079–5085.
11 For related examples of non-innocent solvents (under basic
conditions), see: (a) H. Zhao, H. Fu and R. Qiao, J. Org.
Chem., 2010, 75, 3311–3316; (b) S. R. Lanke and B. M.
Bhanage, Synth. Commun., 2014, 44, 399–407.
12 For characterised examples, see: (a) Y. M. Badiei, A.
Krishnaswamy, M. M. Melzer and T. H. Warren, J. Am.
Chem. Soc., 2006, 128, 15056–15057; (b) Y. M. Badei, A.
21 S. Díez-González, E. C. Escudero-Adán, J. Benet-Buchholz,
E. D. Stevens, A. M. Slawin and S. P. Nolan, Dalton Trans.,
2010, 39, 7595–7606.
22 S. Díez-González, E. D. Stevens, N. M. Scott, J. L. Petersen
and S. P. Nolan, Chem. – Eur. J., 2008, 14, 158–168.
23 (a) D. Schultz and J. R. Nitschke, J. Am. Chem. Soc.,
2006, 128, 9887–9892; (b) M. Lal Saha and M. Schmittel,
Inorg. Chem., 2016, 55, 12366–12375.
24 See ref. 20 and references therein.
25 (a) G. C. van Stein, G. van Koten, K. Vrieze, C. Brevard and
A. L. Spek, J. Am. Chem. Soc., 1984, 106, 4486–4492; (b) D. M.
Haddleton, D. J. Duncalf, D. Kukulj, M. C. Crossman, S. G.
Jackson, S. A. F. Bon, A. J. Clark and A. J. Shooter, Eur. J.
Inorg. Chem., 1998, 1799–1806; (c) S. Dehghanpour, N.
Bouslimani, R. Welter and F. Mojahed, Polyhedron, 2007, 26,
154–162.
26 See ESI† for further details.
Catal. Sci. Technol.
This journal is © The Royal Society of Chemistry 2018