Communication
Organic & Biomolecular Chemistry
the absence of the base (entry 14, Table 1). While other possi-
(e) P. G. Alsabeh, R. J. Lundgren, R. McDonald,
C. C. C. Johansson Seechurn, T. J. Colacot and
5
b,12
bilities (i.e. different mechanisms
and numbers of
ammonia ligands) are not completely excluded at this
moment, the proposed mechanism should adequately
represent the experimental results described above.
M. Stradiotto, Chem.
(f) R. J. Lundgren, B. D. Peters, P. G. Alsabeh and
M. Stradiotto, Angew. Chem., Int. Ed., 2010, 49, 4071;
–
Eur. J., 2013, 19, 2131;
(
2
g) J. L. Klinkenberg and J. F. Hartwig, J. Am. Chem. Soc.,
010, 132, 11830; (h) G. D. Vo and J. F. Hartwig, J. Am.
Conclusions
Chem. Soc., 2009, 131, 11049; (i) T. Schultz, C. Torborg,
S. Enthaler, B. Schäffner, A. Dumrath, A. Spannenberg,
H. Neumann, A. Börner and M. Beller, Chem. – Eur. J.,
In summary, we have developed a simple protocol for copper-
catalyzed amination reaction of aryl iodides using aqueous
ammonia as a nitrogen source without any additional ligands
and organic solvents. This catalytic system is composed of in-
expensive reagents (Cu O or CuI, K CO , and aqueous
ammonia), and applicable for various aromatic and hetero-
aromatic substrates. Some mechanistic insights were obtained
and the reaction pathway via a Cu(I)/Cu(III) mechanism is pro-
posed with the results of DFT calculations. We are conducting
further investigations to expand the substrate scope, as well as
to identify the precise reaction mechanisms by both theore-
tical and experimental ways.
2009, 15, 4528; ( j) D. S. Surry and S. L. Buchwald, J. Am.
Chem. Soc., 2007, 129, 10354; (k) Q. Shen and
J. F. Hartwig, J. Am. Chem. Soc., 2006, 128, 1002.
5 For reviews, see: (a) S. Bhunia, G. G. Pawar, S. V. Kumar,
Y. Jiang and D. Ma, Angew. Chem., Int. Ed., 2017, 56,
2
2
3
16136; (b) P. J. A. Joseph and S. Priyadarshini, Org.
Process Res. Dev., 2017, 21, 1889; (c) J. Lindley,
Tetrahedron, 1984, 40, 1433. For the seminal work on Cu-
catalyzed amination with ammonia, see: (d) F. Lang,
D. Zewge, I. N. Houpis and R. P. Volante, Tetrahedron
Lett., 2001, 42, 3251.
6
For recent representative examples, see: (a) J. Gao,
S. Bhunia, K. Wang, L. Gan, S. Xia and D. Ma, Org.
Lett., 2017, 19, 2809; (b) M. Fan, W. Zhou, Y. Jiang and
D. Ma, Org. Lett., 2015, 17, 5934; (c) B. Yang, L. Liano,
Y. Zeng, X. Zhu and Y. Wan, Catal. Commun., 2014, 45,
Conflicts of interest
There are no conflicts to declare.
1
00; (d) M. Huang, L. Wang, X. Zhu, Z. Mao, D. Kuang
and Y. Wan, Eur. J. Org. Chem., 2012, 4897;
e) K. G. Thakur, D. Ganapathy and G. Sekar, Chem.
Acknowledgements
(
Commun., 2011, 47, 5076; (f) X. Zeng, W. Huang, Y. Qiu
and S. Jiang, Org. Biomol. Chem., 2011, 9, 8224;
This work was financially supported by the Takeda
Science Foundation (to R. T.). Computations were performed
using the Research Center for Computational Science at
Okazaki, Japan.
(
g) M. K. Elmkaddem, C. Fischmeister, C. M. Thomas
and J.-L. Renaud, Chem. Commun., 2010, 46, 5076;
h) F. Meng, X. Zhu, Y. Li, J. Xie, B. Wang, J. Yao and
(
Y. Wan, Eur. J. Org. Chem., 2010, 6149; (i) Z. Wu,
Z. Jiang, D. Wu, H. Xiang and X. Zhou, Eur. J. Org.
Chem., 2010, 1854; ( j) D. Wang, Q. Cai and K. Ding,
Adv. Synth. Catal., 2009, 351, 1722; (k) L. Jiang, X. Lu,
H. Zhang, Y. Jiang and D. Ma, J. Org. Chem., 2009, 74,
4542; (l) H. Xu and C. Wolf, Chem. Commun., 2009,
3035; (m) X.-F. Wu and C. Darcel, Eur. J. Org. Chem.,
2009, 4753; (n) N. Xia and m. Taillefer, Angew. Chem.,
Int. Ed., 2009, 48, 337; (o) J. Kim and S. Chang, Chem.
Commun., 2008, 3052.
Notes and references
1
(a) J. Schrannck and A. Tlili, ACS Catal., 2018, 8, 405;
b) J. L. Klinkenberg and J. F. Hartwig, Angew. Chem., Int.
(
Ed., 2011, 50, 86.
2
(a) P. Ruiz-Castillo and S. L. Buchwald, Chem. Rev., 2016,
1
16, 12564; (b) J. F. Hartwig, Acc. Chem. Res., 2008, 41,
1
534. See also: (c) K. Okano, H. Tokuyama and
T. Fukuyama, Chem. Commun., 2014, 50, 13650.
3
4
D. M. Roundhill, Chem. Rev., 1992, 92, 1.
7 During the preparation of the manuscript, Cu-mediated
direct amination with aqueous ammonia via a dispropor-
tionation (Cu(I)/Cu(III)) pathway was reported. The sequen-
tial amide complex formation and reductive elimination on
Cu(III) species were described, see: H. Kim, J. Heo, J. Kim,
M.-H. Baik and S. Chang, J. Am. Chem. Soc., 2018, 140,
14350.
For representative examples, see: (a) C. Lombardi, J. Day,
N. Chandrasoma, D. Mitchell, M. J. Rodriguez,
J. L. Farmer and M. G. Organ, Organometallics, 2017, 36,
2
51; (b) C. M. Lavoie, P. M. MacQueen, N. L. Rotta-Loria,
R. S. Sawatzky, A. Borzenko, A. J. Chisholm,
B. K. V. Hargreaves, R. McDolald, M. J. Ferguson and
M. Stradiotto, Nat. Commun., 2016, 7, 11073;
8 M. A. Carvajal, J. J. Novoa and S. Alvarez, J. Am. Chem. Soc.,
2004, 126, 1465.
(
c) A. Borzenko, N. L. Rotta-Loria, P. M. MacQueen,
C. M. Lavoie, R. McDolald and M. Stradiotto, Angew.
Chem., Int. Ed., 2015, 54, 3773; (d) R. A. Green and
J. F. Hartwig, Angew. Chem., Int. Ed., 2015, 54, 3768;
9 The reactions were performed in a 10 mL screw cap tube
and the tube was closed after roughly purging with an N
2
gas flow. For details, see the ESI.†
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2018