Langmuir
Article
RGD and synergy domains of fibronectin. Biochemistry 2002, 41,
(41) Palegrosdemange, C.; Simon, E. S.; Prime, K. L.; Whitesides, G.
M. Formation of self-assembled monolayers by chemisorption of
derivatives of oligo(ethylene glycol) of structure HS-
(CH ) (OCH CH )Meta-OH on gold. J. Am. Chem. Soc. 1991,
9
(
063−9069.
18) Feng, Y.; Mrksich, M. The synergy peptide PHSRN and the
adhesion peptide RGD mediate cell adhesion through a common
2
11
2
2
mechanism. Biochemistry 2004, 43, 15811−15821.
113, 12−20.
(
19) Leahy, D. J.; Aukhil, I.; Erickson, H. P. 2.0 Angstrom crystal
(42) Chan, E. W. L.; Yousaf, M. N. Immobilization of ligands with
precise control of density to electroactive surfaces. J. Am. Chem. Soc.
2006, 128, 15542−15546.
structure of a four-domain segment of human fibronectin encompass-
ing the RGD loop and synergy region. Cell 1996, 84, 155−164.
(
20) Ingham, K. C.; Brew, S. A.; Atha, D. H. Interaction of heparin
(43) Pulsipher, A.; Yousaf, M. N. A renewable, chemoselective, and
quantitative ligand density microarray for the study of biospecific
interactions. Chem. Commun. 2011, 47, 523−525.
(44) Mrksich, M. Using self-assembled monolayers to model the
extracellular matrix. Acta Biomater. 2009, 5, 832−841.
with fibronectin and isolated fibronectin domains. Biochem. J. 1990,
72, 605−611.
21) Kim, J. H.; Park, S. O.; Jang, H. J.; Jang, J. H. Importance of the
2
(
heparin-binding domain of fibronectin for enhancing cell adhesion
activity of the recombinant fibronectin. Biotechnol. Lett. 2006, 28,
(45) Lu, J.; Shi, M.; Shoichet, M. S. Click chemistry functionalized
polymeric nanoparticles target corneal epithelial cells through RGD-
cell surface receptors. Bioconjugate Chem. 2009, 20, 87−94.
(46) Du, Y.; Chia, S. M.; Han, R.; Chang, S.; Tang, H.; Yu, H. 3D
hepatocyte monolayer on hybrid RGD/galactose substratum. Bio-
materials 2006, 27, 5669−5680.
1
(
409−1413.
22) Lebaron, R. G.; Athanasiou, K. A. Extracellular matrix cell
adhesion peptides: Functional applications in orthopedic materials.
Tissue Eng. 2000, 6, 85−103.
(
23) Dee, K. C.; Anderson, T. T.; Bizios, R. Design and function of
(47) Napper, C. E.; Drickamer, K.; Taylor, M. E. Collagen binding by
novel osteoblast-adhesive peptides for chemical modification of
the mannose receptor mediated through the fibronectin type 11
biomaterials. J. Biomed. Mater. Res. 1998, 40, 371−377.
domain. Biochem. J. 2006, 395, 579−586.
(
24) McCarthy, J. B.; Skubitz, A. P.; Qi, Z.; Yi, X. Y.; Mickelson, D. J.;
(48) Luo, W.; Chan, E. W. L.; Yousaf, M. N. Tailored electroactive
Klein, D. J.; Furcht, L. T. RGD-independent cell adhesion to the
carboxy-terminal heparin-binding fragment of fibronectin involves
heparin-dependent and -independent activities. J. Cell Biol. 1990, 110,
and quantitative ligand density microarrays applied to stem cell
differentiation. J. Am. Chem. Soc. 2010, 132, 2614−2621.
(49) Dutta, D.; Pulsipher, A.; Luo, W.; Mak, H.; Yousaf, M. N.
7
(
77−787.
Engineering cell surfaces via liposome fusion. Bioconjugate Chem. 2011,
2, 2423−2433.
50) Dutta, D.; Pulsipher, A.; Luo, W.; Yousaf, M. N. Synthetic
25) Kritz, A. B.; et al. Adenovirus 5 fibers mutated at the putative
2
(
HSPG-binding site show restricted retargeting with targeting peptides
in the HI loop. Mol. Ther. 2007, 15, 741−749.
chemoselective rewiring of cell surfaces: Generation of three-
(
26) Darr, S.; Madisch, I.; Hofmayer, S.; Rehren, F.; Heim, A.
dimensional tissue structures. J. Am. Chem. Soc. 2011, 133, 8704−
Phylogeny and primary structure analysis of fiber shafts of all human
adenovirus types for rational design of adenoviral gene-therapy vectors.
J. Gen. Virol. 2009, 90, 2849−2854.
8
713.
(51) Ostuni, E.; Chapman, R. C.; Liang, M. N.; Meluleni, G.; Pier,
G.; Ingber, D. E.; Whitesides, G. M. Self-assembled monolayers that
resist the adsorption of proteins and the adhesion of bacterial and
mammalian cells. Langmuir 2001, 17, 6336−6343.
(
27) Di Paolo, N. C.; Kalyuzhniy, O.; Shayakhmetov, D. M. Fiber
shaft-chimeric adenovirus vectors lacking the KKTK motif efficiently
infect liver cells in vivo. J. Virol. 2007, 81, 12249−12259.
(52) Xiao, Y.; Truskey, G. A. Effect of receptor-ligand affinity on the
(
28) Buck, C. A.; Horwitz, A. F. Cell surface receptors for
strength of endothelial cell adhesion. J. Biophys. 1996, 71, 2869−2884.
extracellular matrix molecules. Annu. Rev. Cell Biol. 1987, 3, 179−205.
29) Humphries, J. D.; Byron, A.; Humphries, M. J. Integrin ligands
at a glance. J. Cell Sci. 2006, 119, 3901−3903.
30) Eisenberg, J. L.; Piper, J. L.; Mrksich, M. Using self-assembled
(53) Livant, D. L.; Brabec, R. K.; Kurachi, K.; Allen, D. L.; Wu, Y.;
(
Haaseth, R.; Andrews, P.; Ethier, S. P.; Markwart, S. The PHSRN
Sequence Induces Extracellular Matrix Invasion and Accelerates
Wound Healing in Obese Diabetic Mice. J. Clin. Invest. 2000, 105,
(
monolayers to model cell adhesion to the 9th and 10th type III
1
(
537−1545.
domains of fibronectin. Langmuir 2009, 25, 13942−13951.
54) Kimura, K.; Hattori, A.; Usui, Y.; Kitazawa, K.; Naganuma, M.;
(
31) Nakanishi, J. Switchable substrates for analyzing and engineering
Kawamoto, K.; Teranishi, S.; Nomizu, M.; Nishida, T. Stimulation of
corneal epithelial migration by a synthetic peptide (PHSRN)
corresponding to the second cell-binding site of fibronectin. Invest.
Ophthalmol. Vis. Sci. 2007, 48, 1110−1118.
cell functions. Chem.Asian J. 2014, 9, 406−417.
32) Mendes, P. M. Stimuli-responsive surfaces for bio-applications.
Chem. Soc. Rev. 2008, 37, 2512−2529.
33) Wischerhoff, E.; Badi, N.; Lutz, J.-F.; Laschewsky, A. Smart
bioactive surfaces. Soft Matter 2010, 6, 705−713.
34) Luo, W.; Yousaf, M. N. Tissue morphing control on dynamic
gradient surfaces. J. Am. Chem. Soc. 2011, 133, 10780−10783.
35) Liu, D.; Xie, Y.; Shao, H.; Jiang, X. Using azobenzene-embedded
(
(
(55) Park, S.; Westcott, N.P.; Luo, W.; Dutta, D.; Yousaf, M.N.
General chemoselective and redox-responsive ligation and release
(
strategy. Bioconjugate Chem. 2014, 25, 543−551.
(56) Lamb, B.M.; Luo, W.; Nagdas, S.; Yousaf, M.N. Cell division
(
orientation on biospecific peptide gradients. ACS Appl. Mater. Interface
014, 6, 11523−11528.
57) Lee, E.-J.; Chan, E. W. L.; Luo, W.; Yousaf, M.N. Ligand slope,
self-assembled monolayers to photochemically control cell adhesion
2
(
reversibly. Angew. Chem., Int. Ed. 2009, 48, 4406−4408.
(
36) Lee, E.-J.; Chan, E. W. L.; Yousaf, M. N. Spatio-temporal control
density and affinity direct cell polarity and migration on molecular
of cell coculture interactions on surfaces. ChemBioChem. 2009, 10,
648−1653.
37) Lamb, B. M.; Yousaf, M. N. Redox switchable surface for
controlling peptide structure. J. Am. Chem. Soc. 2011, 133, 8870−8873.
38) Chan, E. W. L.; Park, S.; Yousaf, M. N. An electroactive catalytic
gradient surfaces. RSC Adv. 2014, 4, 31581−31588.
1
(
(58) Krabbenborg, S. O.; Huskens, J. Electrochemically Generated
Gradients. Angew. Chem., Int. Ed. 2014, 53, 9152−9167.
(59) Gooding, J. J.; Parker, S. G.; Lu, Y.; Gaus, K. Molecularly
(
engineered surfaces for cell biology: From static to dynamic surfaces.
dynamic substrate that immobilizes and releases patterned ligands,
Langmuir 2014, 30, 3290−3302.
proteins, and cells. Angew. Chem, Int. Ed. 2008, 47, 6267−6271.
(60) Lee, J.; Choi, I.; Yeo, W.-S. Preparation of gradient surfaces by
(
39) Pulsipher, A.; Dutta, D.; Luo, W.; Yousaf, M.N. Cell surface
using a simple chemical reaction and investigation of cell adhesion on
a two component gradient. Chem.Eur. J. 2013, 19, 5609−5616.
engineering by a conjugation and release approach based on the
formation and cleavage of oxime linkages upon mild electrochemical
oxidation and reduction. Angew. Chem., Int. Ed. 2014, 53, 9487−9492.
(
40) Li, J.; Thiara, P. S.; Mrksich, M. Rapid evaluation and screening
of interfacial reactions on self-assembled monolayers. Langmuir 2007,
3, 11826−11835.
2
1
3666
dx.doi.org/10.1021/la503521x | Langmuir 2014, 30, 13656−13666