Journal of the American Chemical Society
Communication
(StG-239898), COST (CM0703 and CM0905), and MIUR is
acknowledged.
REFERENCES
■
(1) Wiester, M. J.; Ulmann, P. A.; Mirkin, C. A. Angew. Chem., Int. Ed.
2011, 50, 114.
(2) Breslow, R. Acc. Chem. Res. 1995, 28, 146.
(3) Fersht, A. Structure and Mechanism in Protein Structure, 3rd ed.;
Freeman: New York, 1999.
(4) Kofoed, J.; Reymond, J. L. Curr. Opin. Chem. Biol. 2005, 9, 656.
(5) Mancin, F.; Scrimin, P.; Tecilla, P.; Tonellato, U. Coord. Chem.
Rev. 2009, 253, 2150.
(6) Astruc, D.; Lu, F.; Aranzaes, J. R. Angew. Chem., Int. Ed. 2005, 44,
7852.
Figure 6. Initial rate as a function of the concentration of Cbz-Phe-
ONP. Conditions: [Au MPC 1 headgroup] = 60 μM; [H1] = 10 μM;
[HEPES] = 10 mM; H2O/CH3CN = 90:10; pH 7.0; T = 37 °C.
(7) Schatz, A.; Reiser, O.; Stark, W. J. Chem.Eur. J. 2010, 16, 8950.
(8) Roy, S.; Pericas, M. A. Org. Biomol. Chem. 2009, 7, 2669.
(9) Gentilini, C.; Pasquato, L. J. Mater. Chem. 2010, 20, 1403.
(10) Pieters, G.; Cazzolaro, A.; Bonomi, R.; Prins, L. J. Chem.
Commun. 2012, 48, 1916.
(11) Bunz, U. H. F.; Rotello, V. M. Angew. Chem., Int. Ed. 2010, 49,
3268.
(12) De, M.; Ghosh, P. S.; Rotello, V. M. Adv. Mater. 2008, 20, 4225.
(13) Shenhar, R.; Rotello, V. M. Acc. Chem. Res. 2003, 36, 549.
(14) Pasquato, L.; Rancan, F.; Scrimin, P.; Mancin, F.; Frigeri, C.
Chem. Commun. 2000, 2253.
type between small molecules and SAMs have also been
reported by Mancin and co-workers.28 The contemporaneous
binding of both H1 and the substrate on the multivalent surface
of Au MPC 1 at low micromolar concentrations results in an
enormous increase in the effective molarity, which, along with
the above-mentioned pH effect, appears to be the main reason
for the observed high catalytic activity.
(15) Bonomi, R.; Cazzolaro, A.; Prins, L. J. Chem. Commun. 2011, 47,
445.
In conclusion, we have developed a supramolecular catalytic
system formed through the self-assembly of small peptides on
the surface of Au MPCs. Self-assembly is a prerequisite for the
catalysis, since the catalytic peptides do not display any activity
in the absence of Au MPCs. Assembly on the surface of Au
MPC 1 results in a rate acceleration of at least 2 orders of
magnitude in a transesterification reaction. The multivalent
surface is essential for bringing the substrate and catalyst into
close proximity but, importantly, also generates a local chemical
environment that enhances the reactivity of the catalytic unit. In
this way, the system mimics some of the key features of
enzymes. The system presented here allows for a series of
exciting possibilities, such as the possibility of fine-tuning the
catalytic properties simply by altering the catalytic peptide
sequence or the possibility of turning the catalytic activity on or
off in situ as a result of the addition of inhibitors/activators. In
our opinion, this approach has the potential to be exploited for
the development of synthetic systems able to match up to the
complexity displayed by enzymes simply by combining various
small fragments.
(16) Dulkeith, E.; Morteani, A. C.; Niedereichholz, T.; Klar, T. A.;
Feldmann, J.; Levi, S. A.; van Veggel, F.; Reinhoudt, D. N.; Moller, M.;
Gittins, D. I. Phys. Rev. Lett. 2002, 89, No. 203002.
(17) The curvature of the binding isotherms measured for H2 and H3
indicated a slightly lower affinity of these peptides for Au MPC 1
attributed to the presence of the (protonated) imidazoles. It was
calculated that upon the addition of 8.5 μM H2 and H3, ∼15% of these
peptides were not bound. For H0 and H1 (at 11 μM) these values were
5 and 8%, respectively.
(18) All studies were performed on enantiomerically pure D-Cbz-
Phe-ONP. Kinetics with the L enantiomer revealed no significant
enantioselectivity.
(19) Tonellato, U. J. Chem. Soc., Perkin Trans. 2 1977, 821.
(20) Fornasier, R.; Tonellato, U. J. Chem. Soc., Faraday Trans. 1 1980,
76, 1301.
(21) For an overview of ion distributions at the interface of
association colloids, see: Bunton, C. A.; Nome, F.; Quina, F. H.;
Romsted, L. S. Acc. Chem. Res. 1991, 24, 357.
(22) Guler, M. O.; Stupp, S. I. J. Am. Chem. Soc. 2007, 129, 12082.
(23) Delort, E.; Darbre, T.; Reymond, J. L. J. Am. Chem. Soc. 2004,
126, 15642.
(24) Zaupa, G.; Mora, C.; Bonomi, R.; Prins, L. J.; Scrimin, P.
Chem.Eur. J. 2011, 17, 4879.
ASSOCIATED CONTENT
* Supporting Information
Synthesis and characterization of H0−H3, procedures for the
kinetic experiments, background rates and control experiments,
titration with bromothymol blue, and reaction rate as a function
of pH. This material is available free of charge via the Internet
(25) Zaupa, G.; Scrimin, P.; Prins, L. J. J. Am. Chem. Soc. 2008, 130,
5699.
■
S
(26) Pengo, P.; Polizzi, S.; Pasquato, L.; Scrimin, P. J. Am. Chem. Soc.
2005, 127, 1616.
(27) Javor, S.; Delort, E.; Darbre, T.; Reymond, J. L. J. Am. Chem. Soc.
2007, 129, 13238.
(28) Guarino, G.; Rastrelli, F.; Mancin, F. Chem. Commun. 2012, 48,
1523.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
Alessandro Cazzolaro is gratefully acknowledged for the
synthesis of Au MPC 1. Financial support from the ERC
■
8399
dx.doi.org/10.1021/ja302754h | J. Am. Chem. Soc. 2012, 134, 8396−8399