figures were prepared using PyMol (http://www.
pymol.org).
metagenomic approach. Appl Environ Microbiol 78:
556–1562.
5. Nguyen TN, You DJ, Kanaya E, Koga Y, Kanaya S,
2013) Crystal structure of metagenome-derived LC9-
1
1
Protein data bank accession number: The
coordinates and structure factors for LC-Est1C*
have been deposited in the PDB under ID code
(
RNase H1 with atypical DEDN active site motif. FEBS
Lett 587:1418–1423.
3
WYD.
16. Nguyen TN, Angkawidjaja C, Kanaya E, Koga Y,
Takano K, Kanaya S (2012) Activity, stability, and
structure of metagenome-derived LC11-RNase H1, a
homolog of Sulfolobus tokodaii RNase H1. Protein Sci
Acknowledgments
The synchrotron radiation experiments were per-
formed at Osaka University beam line BL44XU at
SPring-8 with the approval of the Japan Synchro-
tron Radiation Research Institute (JASRI; Proposal
No. 2013B6813, 2014A6915). The authors thank Dr.
Y. Koga for helpful discussions. The authors do not
have a conflict of interest to declare.
2
1:553–561.
1
1
1
7. Nguyen TN, You DJ, Matsumoto H, Kanaya E, Koga Y,
Kanaya S (2013) Crystal structure of metagenome-
derived LC11-RNase H1 in complex with RNA/DNA
hybrid. J Struct Biol 182:144–154.
8. Sulaiman S, You D-J, Kanaya E, Koga Y, Kanaya S
(
2014) Crystal structure and thermodynamic and
kinetic stability of metagenome-derived LC-cutinase.
Biochemistry 53:1858–1869.
9. Challacombe JF, Eichorst SA, Hauser L, Land M, Xie
G, Kuske CR (2011) Biological consequences of ancient
gene acquisition and duplication in the large genome of
Candidatus Solibacter usitatus Ellin6076. PLoS One 6:
e24882.
References
1
. Holmquist
M
(2000) Alpha/Beta-hydrolase fold
enzymes: structures, functions and mechanisms. Curr
Protein Pept Sci 1:209–235.
2
. Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F,
Franken SM, Harel M, Remington SJ, Silman I,
Schrag J, Sussman JL, Verschueren KHG, Goldman
A (1992) The a/b hydrolase fold. Protein Eng 5:197–
20. Levisson M, Sun L, Hendriks S, Swinkels P, Akveld
T, Bultema JB, Barendregt A, van den Heuvel RH,
Dijkstra BW, van der Oost J, Kengen SW (2009)
Crystal structure and biochemical properties of a
2
11.
novel
thermostable
esterase
containing
an
3
. L ꢀo pez-L ꢀo pez O, Cerd aꢀ n ME, Gonzalez-Siso MI (2014)
New extremophilic lipases and esterases from metage-
nomics. Curr Protein Pept Sci 15:445–455.
immunoglobulin-like domain. J Mol Biol 385:949–
962.
21. Karshikoff A, Ladenstein R (2001) Ion pairs and the
thermotolerance of proteins from hyperthermophiles: a
“traffic rule” for hot roads. Trends Biochem Sci 26:550–
556.
4
5
. Verger R (1997) ‘Interfacial activation’ of lipases, facts
and artifacts. Tibtech 15:32–38.
. Bornscheuer UT (2002) Microbial carboxyl esterases:
classification, properties and application in biocataly-
sis. FEMS Microbiol Rev 26:73–81.
22. Shirley BA, Stanssens P, Hahn U, Pace CN (1992) Con-
tribution of hydrogen bonding to the conformational
stability of ribonuclease T1. Biochemistry 31:725–732.
23. Watanabe K, Chishiro K, Kitamura K, Suzuki Y (1991)
Proline residues responsible for thermostability occur
with high frequency in the loop regions of an extremely
thermostable oligo-1,6-glucosidase from Bacillus ther-
6
. Jochens H, Hesseler M, Stiba K, Padhi SK,
Kazlauskas RJ, Bornscheuer UT (2011) Protein engi-
neering of a/b-hydrolase fold enzymes. Chembiochem
1
2:1508–1517.
7
8
. Steele HL, Jaeger KE, Daniel R, Streit WR (2009)
Advances in recovery of novel biocatalysts from meta-
genomes. J Mol Microbiol Biotechnol 16:25–37.
moglucosidasius KP1006.
J Biol Chem 266:24287–
24294.
. Tuffin M, Anderson D, Heath C, Cowan DA (2009)
Metagenomic gene discovery: how far have we
moved into novel sequence space? Biotechnol J 4:
24. Boutz DR, Cascio D, Whitelegge J, Perry LJ, Yeates
TO (2007) Discovery of a thermophilic protein complex
stabilized by topologically interlinked chains. J Mol
Biol 368:1332–1344.
1
671–1683.
9
. Uchiyama T, Miyazaki K (2009) Functional metage-
nomics for enzyme discovery: challenges to efficient
screening. Curr Opin Biotechnol 20:616–622.
25. Pace CN, Fu H, Fryar KL, Landua J, Trevino SR,
Shirley BA, Hendricks MM, Iimura S, Gajiwala K,
Scholtz JM, Grimsley GR (2011) Contribution of hydro-
phobic interactions to protein stability. J Mol Biol 408:
514–528.
1
0. Simon C, Daniel R (2011) Metagenomic analyses: past
and future trends. Appl Environ Microbiol 77:1153–
1
161.
26. You DJ, Chon H, Koga Y, Takano K, Kanaya S (2007)
Crystal structure of type 1 ribonuclease H from hyper-
thermophilic archaeon Sulfolobus tokodaii: role of argi-
nine 118 and C-terminal anchoring. Biochemistry 46:
11494–11503.
1
1. Iqbal HA, Feng Z, Brady SF (2012) Biocatalysts and
small molecule products from metagenomic studies.
Curr Opin Chem Biol 16:109–116.
1
1
2. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic
enzymes: classification and properties. Biochem J 343:
27. Hendrickson WA, Horton JR, LeMaster DM. (1990)
Selenomethionyl proteins produced for analysis by mul-
tiwavelength anomalous diffraction (MAD): a vehicle
for direct determination of three-dimensional structure.
EMBO J 9:1665–1672.
1
77–183.
3. Kanaya E, Sakabe T, Nguyen NT, Koikeda S, Koga Y,
Takano K, Kanaya S (2010) Cloning of the RNase H
genes from a metagenomic DNA library: identification
of a new type 1 RNase H without a typical active-site
motif. J Appl Microbiol 109:974–983.
28. Laemmli UK (1970) Cleavage of structural proteins
during the assembly of the head of bacteriophage T4.
Nature 227:680–685.
1
4. Sulaiman S, Yamato S, Kanaya E, Kim JJ, Koga Y,
Takano K, Kanaya S (2011) Isolation of a novel cuti-
nase homolog with polyethylene terephthalate degrad-
29. Goodwin TW, Morton RA (1946) The spectrophotomet-
ric determination of tyrosine and tryptophan in pro-
teins. Biochem J 40:628–632.
ing activity from leaf-branch compost using
a
Okano et al.
PROTEIN SCIENCE VOL 24:93—104 103