Paper
RSC Advances
volume ratio, but at a size that can easily be removed from 17 S. H. Lee, J. Choi, M. Han, J. H. Choi and S. Y. Lee, Biotechnol.
suspension by centrifugation or routine ltration. The yeast cell Bioeng., 2005, 90, 223–230.
appears to confer signicant thermal stability upon ycM37L, 18 S. Tamalampudi, S. Hama, T. Tanino, M. R. Talukder,
and the thermal stability of YSD CalB was similar to that of a
commercial acrylic bead-based system. Lipase produced with
A. Kondo and H. Fukuda, J. Mol. Catal. B: Enzym., 2007, 48,
33–37.
YSD is more efficient on a per-enzyme basis than lipase in N435. 19 M. Kato, J. Fuchimoto, T. Tanino, A. Kondo, H. Fukuda and
M. Ueda, Appl. Microbiol. Biotechnol., 2007, 75, 549–555.
2
2
2
2
2
2
0 S. Shiraga, M. Kawakami, M. Ishiguro and M. Ueda, Appl.
Environ. Microbiol., 2005, 71, 4335–4338.
1 G. Su, X. Zhang and Y. Lin, Biotechnol. Lett., 2010, 32, 1131–
Acknowledgements
The authors gratefully acknowledge Sonia Herrero from
Professor Margo Daub's lab at NCSU for donating a lab strain of
E. coli; Professor Balaji Rao's lab for donating the pCT-EGFP
vector, the stocks for EBY100, and time on the cell sorter; and
Kerri Cushing for donating the pET22-CalB vector. This work
1136.
2 A. Bielen, R. Teparic, D. Vujaklija and V. Mrsa, Food Technol.
Biotechnol., 2014, 2014, 16–34.
3 W. Zhang, S. Han, D. Wei, Y. Lin and X. Wang, J. Chem.
Technol. Biotechnol., 2008, 83, 329–335.
4 A. Yoshida, S. Hama, K. Nakashima and A. Kondo, Enzyme
Microb. Technol., 2011, 48, 334–338.
5 T. Tanino, T. Aoki, W. Chung, Y. Watanabe, C. Ogino,
H. Fukuda and A. Kondo, Appl. Microbiol. Biotechnol., 2009,
(JE) was supported in part by NSF award 0832498 through the
Center for BioEnergy Research and Development, by the GAANN
Interdisciplinary Doctoral Program in Molecular Biotechnology,
award P200A090129-11, and by the Eastman Chemical Center of
Excellence. The authors declare no conicts of interest.
82, 59–66.
2
6 S. Han, Z. Pan, D. Huang, M. Ueda, X. Wang and Y. Lin,
J. Mol. Catal. B: Enzym., 2009, 59, 168–172.
7 J. Han and H. Kim, J. Microbiol. Biotechnol., 2011, 21, 1159–
1165.
Notes and references
2
1
C. Mateo, J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan
and R. Fernandez-Lafuente, Enzyme Microb. Technol., 2007, 28 S. Shibasaki, M. Ueda, T. Iizuka, M. Hirayama, Y. Ikeda,
4
0, 1451–1463.
N. Kamasawa, M. Osumi and A. Tanaka, Appl. Environ.
Microbiol., 2001, 55, 471–475.
29 H. S. Ryu, H. K. Kim, W. C. Choi, M. H. Kim, S. Y. Park,
N. S. Han, T. K. Oh and J. K. Lee, Appl. Microbiol.
Biotechnol., 2005, 70, 321–326.
2
3
4
A. Illanes, Enzyme biocatalysis: principles and applications,
Springer, New York, 2008.
P. Tufvesson, J. Lima-Ramos, M. Nordblad and
J. M. Woodley, Org. Process Res. Dev., 2010, 15, 266–274.
E. T. Boder and K. D. Wittrup, Nat. Biotechnol., 1997, 15, 553– 30 K. Umemura, H. Atomi, T. Kanai, Y. Teranishi, M. Ueda and
57. A. Tanaka, Appl. Microbiol. Biotechnol., 1995, 43, 489–492.
5
5
6
M. Ueda and A. Tanaka, J. Biosci. Bioeng., 2000, 90, 125–136. 31 J. Eby and S. W. Peretti, RSC Adv., submitted
C. E. Ballou, Cold Spring Harbor Monograph Archive, 1982, vol. 32 Z. Pan, Z. Yang, L. Pan, S. Zheng, S. Han and Y. Lin, J. Ind.
1
1, pp. 335–360.
T. Matsumoto, H. Fukuda, M. Ueda, A. Tanaka and A. Kondo, 33 Z. Jin, J. Ntwali, S. Han, S. Zheng and Y. Lin, J. Biotechnol.,
Appl. Environ. Microbiol., 2002, 68, 4517–4522.
2012, 159, 108–114.
N. Gera, M. Hussain, R. C. Wright and B. M. Rao, J. Mol. Biol., 34 Z. Jin, S. Liang, X. Zhang, S. Han, C. Ren, Y. Lin and S. Zheng,
011, 409, 601–616. Biotechnol. Bioprocess Eng., 2013, 18, 365–374.
Y. Fujita, S. Takahashi, M. Ueda, A. Tanaka, H. Okada, 35 Z. Cabrera, G. Fernandez-Lorente, R. Fernandez-Lafuente,
Microbiol. Biotechnol., 2014, 41, 711–720.
7
8
9
2
Y. Morikawa, T. Kawaguchi, M. Arai, H. Fukuda and
A. Kondo, Appl. Environ. Microbiol., 2002, 68, 5136–5141.
J. M. Palomo and J. M. Guisan, J. Mol. Catal. B: Enzym.,
2009, 57, 171–176.
1
0 P. Villeneuve, J. M. Muderhwa, J. Graille and M. J. Haas, 36 J. Sambrook, Molecular cloning: a laboratory manual, Cold
J. Mol. Catal. B: Enzym., 2000, 9, 113–148.
1 A. M. Klibanov, Trends Biochem. Sci., 1989, 14, 141–144.
Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.,
2001.
1
12 J. Uppenberg, N. Oehrner, M. Norin, K. Hult, G. J. Kleywegt, 37 D. R. Gietz and R. A. Woods, in Methods in Enzymology, ed. C.
S. Patkar, V. Waagen, T. Anthonsen and T. A. Jones,
Biochemistry, 1995, 34, 16838–16851.
3 Y. Shimada, Y. Watanabe, T. Samukawa, A. Sugihara,
Guthrie and G. R. Fink, Academic Press, 2002, pp. 87–96.
38 D. M. Becker and V. Lundblad, in Current Protocols in
Molecular Biology, John Wiley & Sons, Inc., 2001.
1
H. Noda, H. Fukuda and Y. Tominaga, J. Am. Oil Chem. 39 N. Gera, M. Hussain and B. M. Rao, Methods, 2013, 60, 15–26.
Soc., 1999, 76, 789–793.
40 C. S. Hoffman, in Current Protocols in Molecular Biology, John
1
1
4 J. H. Yoon, Int. J. Syst. Evol. Microbiol., 2005, 55, 335–339.
Wiley & Sons, Inc., 2001.
5 K. S. Yang, J. Sohn and H. K. Kim, J. Biosci. Bioeng., 2009, 107, 41 M. F. Canbolat, N. Gera, C. Tang, B. Monian, B. M. Rao,
5
99–604.
B. Pourdeyhimi and S. A. Khan, ACS Appl. Mater. Interfaces,
2013, 5, 9349–9354.
1
6 T. P. Korman, B. Sahachartsiri, D. M. Charbonneau,
G. L. Huang, M. Beauregard and J. U. Bowie, Biotechnol. 42 D. G. Gibson, in Methods in Enzymology, Academic Press,
Biofuels, 2013, 6, DOI: 10.1186/1754-6834-6-70. 2011, pp. 349–361.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 19166–19175 | 19175