ChemComm
Communication
This observed rate enhancement is attributed to the larger
relative external surface areas and/or faster diffusion through
the nano-sized MOF crystallites compared to microcrystalline
material. We hope that this work will inspire further investiga-
tions into the fabrication of nano-sized mesoporous zirconium
MOF crystallites for desired applications.
J.T.H. gratefully acknowledges DTRA for financial support
(HDTRA1-14-1-0014 for the nano-MOF synthesis and HDTRA1-
10-1-0023 for the catalytic study). O.K.F. and S.S.A. contribution
to this project was funded by the Deanship of scientific Research
(DSR), King Abdulaziz University. Jeddah, under grant no. 23-130-
36-HiCi. The authors, therefore, acknowledge with thanks DSR
technical and financial support. The authors thank Dr Brian Pate
for helpful discussions.
Fig. 3 Rates of hydrolysis of methyl paraoxon using NU-1000 nanocrystals
with mean sizes ranging from 75 nm (black), 150 nm (red), 500 nm (green),
1200 nm (blue), to 15 000 nm (pink).
Notes and references
1 (a) O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi
and J. Kim, Nature, 2003, 423, 705–714; (b) G. Ferey, Chem. Soc. Rev.,
2008, 37, 191–214; (c) S. Horike, S. Shimomura and S. Kitagawa, Nat.
Chem., 2009, 1, 695–704; (d) O. K. Farha and J. T. Hupp, Acc. Chem.
Res., 2010, 43, 1166–1175.
2 (a) J. A. Mason, M. Veenstra and J. R. Long, Chem. Sci., 2014, 5,
32–51; (b) L. J. Murray, M. Dinca and J. R. Long, Chem. Soc. Rev.,
2009, 38, 1294–1314.
becomes smaller (Fig. S5a, ESI†). In the PSD region from 100 Å to
1400 Å, the average pore width of the main peak (corresponding
to the space between the crystals) is increasing as the size of
NU-1000 particles increases (Fig. S5b, ESI†).
3 J.-R. Li, J. Sculley and H.-C. Zhou, Chem. Rev., 2011, 112, 869–932.
4 L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne
and J. T. Hupp, Chem. Rev., 2011, 112, 1105–1125.
We next investigated the rate of hydrolysis of methyl para-
oxon as a function of NU-1000 particle size.12a,23b,c As shown in
Fig. 3, under fixed reaction conditions (identical catalyst load-
ing, temperature, and reagent concentration), the reaction rate
increases inversely with particle size. The half-life (t1/2) for the
hydrolysis of methyl paraoxon at room temperature dramati-
cally decreases as the particle size decrease (Table S1, ESI†). The
significantly enhanced reaction rate could be attributed to the
larger relative external surface areas of nano-sized NU-1000
particles and/or faster diffusion into nano-sized NU-1000 particles
compared to microcrystalline NU-1000.
If we consider NU-1000 as an ideal hexagonal cylinder,
the ratio of surface area over volume (S/V) can be denoted as
S/V = 2/h + 2.3/a, where a is the length of the base edge of the
hexagon and h is the length of the cylinder. As the particle sizes
decrease, the ratio S/V becomes larger, and accordingly, the rate
of hydrolysis increases (Table S2, ESI†). This trend of S/V over
particle size is further confirmed by a t-plot analysis based on
the N2 isotherms data. The calculated external surface area of the
five different-sized NU-1000 materials are 200 m2 gÀ1 (75 nm),
150 m2 gÀ1 (150 nm), 71 m2 gÀ1 (500 nm), 33 m2 gÀ1 (1200 nm),
13 m2 gÀ1 (15 000 nm), respectively (Table S3, ESI†).
In summary, we have reported procedures to effectively
control the particle size of NU-1000 (from 75 nm to 1200 nm)
and PCN-222/MOF-545 (from 300 nm to 900 nm) in the nano
regime by modulating the concentration of modulator and reac-
tion mixture, and/or addition of a secondary monocarboxylic
acid modulator. Powder X-ray diffraction patterns and nitrogen
sorption experiments indicate that the crystallinity and meso-
porosity of NU-1000 is maintained in the nano-sized particles.
Additionally, the rate of hydrolysis of methyl paraoxon was
investigated using NU-1000 particles with different sizes and
determined to increase as the size of the particles decreases.
5 (a) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and
J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450–1459; (b) J. Liu, L. Chen,
H. Cui, J. Zhang, L. Zhang and C.-Y. Su, Chem. Soc. Rev., 2014, 43,
6011–6061.
¨
6 (a) O. K. Farha, A. O. Yazaydın, I. Eryazici, C. D. Malliakas, B. G.
Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr and J. T. Hupp,
Nat. Chem., 2010, 2, 944–948; (b) O. K. Farha, I. Eryazici, N. C. Jeong,
B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen,
A. O. Z. R. Yazaydın and J. T. Hupp, J. Am. Chem. Soc., 2012, 134,
15016–15021; (c) H. Furukawa, K. E. Cordova, M. O’Keeffe and
O. M. Yaghi, Science, 2013, 341, 974.
7 (a) K. Schlichte, T. Kratzke and S. Kaskel, Microporous Mesoporous
Mater., 2004, 73, 81–88; (b) M. H. Beyzavi, R. C. Klet, S. Tussupbayev,
J. Borycz, N. A. Vermeulen, C. J. Cramer, J. F. Stoddart, J. T. Hupp
and O. K. Farha, J. Am. Chem. Soc., 2014, 136, 15861–15864.
8 (a) H. G. T. Nguyen, N. M. Schweitzer, C.-Y. Chang, T. L. Drake, M. C. So,
P. C. Stair, O. K. Farha, J. T. Hupp and S. T. Nguyen, ACS Catal., 2014, 4,
2496–2500; (b) A. M. Shultz, O. K. Farha, J. T. Hupp and S. T. Nguyen,
´
J. Am. Chem. Soc., 2009, 131, 4204–4205; (c) A. Corma, H. Garcıa and
´
F. X. Llabres i Xamena, Chem. Rev., 2010, 110, 4606–4655.
9 (a) P. W. Siu, Z. J. Brown, O. K. Farha, J. T. Hupp and K. A. Scheidt,
Chem. Commun., 2013, 49, 10920–10922; (b) C. M. McGuirk, M. J.
Katz, C. L. Stern, A. A. Sarjeant, J. T. Hupp, O. K. Farha and C. A. Mirkin,
J. Am. Chem. Soc., 2015, 137, 919–925; (c) L. Ma, C. Abney and W. Lin,
Chem. Soc. Rev., 2009, 38, 1248–1256.
10 B. Chen, S. Xiang and G. Qian, Acc. Chem. Res., 2010, 43, 1115–1124.
11 (a) J. E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E. J.
DeMarco, M. H. Weston, A. A. Sarjeant, S. T. Nguyen, P. C. Stair
and R. Q. Snurr, J. Am. Chem. Soc., 2013, 135, 10294–10297;
(b) D. Feng, Z.-Y. Gu, J.-R. Li, H.-L. Jiang, Z. Wei and H.-C. Zhou,
Angew. Chem., Int. Ed., 2012, 51, 10307–10310; (c) W. Morris,
´
B. Volosskiy, S. Demir, F. Gandara, P. L. McGrier, H. Furukawa,
D. Cascio, J. F. Stoddart and O. M. Yaghi, Inorg. Chem., 2012, 51,
6443–6445; (d) H. Deng, S. Grunder, K. E. Cordova, C. Valente,
´
H. Furukawa, M. Hmadeh, F. Gandara, A. C. Whalley, Z. Liu,
S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J. F. Stoddart
and O. M. Yaghi, Science, 2012, 336, 1018–1023; (e) Z.-Y. Gu, J. Park,
A. Raiff, Z. Wei and H.-C. Zhou, ChemCatChem, 2014, 6, 67–75;
( f ) W. Xuan, C. Zhu, Y. Liu and Y. Cui, Chem. Soc. Rev., 2012, 41,
1677–1695; (g) L. Song, J. Zhang, L. Sun, F. Xu, F. Li, H. Zhang, X. Si,
C. Jiao, Z. Li and S. Liu, Energy Environ. Sci., 2012, 5, 7508–7520.
This journal is ©The Royal Society of Chemistry 2015
Chem. Commun.