Please do not adjust margins
RSC Advances
Page 4 of 6
DOI: 10.1039/C6RA22972G
ARTICLE
Journal Name
3. J. Ma, K. Wang, L. Li, T. Zhang, Y. Kong, S. Komarneni,
Ceram. Int., 2015, 41(2), 2050-2056.
Mechanism
4. (a) Y. K. Lin, Y. J. Chiang, Y. J. Hsu, Sens. Actuators, B, 2014,
204, 190-196; (b) L. Wang, R.Zhang, T. Zhou, Z. Lou, J.
Deng, T. Zhang, Sens. Actuators, B. 2016, 223, 311-317.
5. (a) J. Ma, S. Gou, X. Gou, H. Ge, Surf. Coat. Technol., 2015,
272, 268-272; (b) J. Ren, W. Wang, S. Sun, L. Zhang, L.
Wang, J. Chang, Ind. Eng. Chem. Res., 2011, 50, 10366-
10369.
6. (a) R. Wick, D. Tilley, J. Phys. Chem. C, 2015, 119, 26243-
26257; (b) A. O. Musa, T. Akomlafe, M. J. Carter, Sol.
Energ. Mat. Sol. Cells, 1998, 51, 305-316.
The exact mechanism for the ipso-hydroxylation of aryl boronic
acids is unknown. But a proposed reaction mechanism is given
below (figure 7). The reaction occurs via oxidative addition followed
by reductive elimination of the boronic acid.20 As the reaction is
heterogeneous and the powder XRD and TEM image taken after
recycling of the catalyst exhibits the identical peaks and size of the
Cu2O nanoparticles. These experimental results clearly reveal that
the reaction takes place on the surface of the Cu2O nanoparticles.
7. (a) Y. H. Su, S. H. Huang, P. Y. Kung, T. W. Shen, W. L. Wang,
ACS Sustainable Chem. Eng., 2015, 3, 1965-1973; (b) A. A.
Dubale, C. J. Pan, A. G. Tamirat, H. M. Chen,W. N. Su, C. H.
Chen, J. Rick, D. W. Ayele, B. A. Aragaw, J. F. Lee, Y. W.
Yang, B. J Hwang, J. Mater. Chem. A, 2015, 3, 12482.
8. (a) A. Li, H. Song, W. Wan, J. Zhou, X. Chen, Electrochim.
Acta, 2014, 130, 42-48; (b) M. V. Reddy, G. V. Subba Rao,
V. R. Chowdari, Chem. Rev., 2013, 113, 5364-5457.
9. (a) Y. Cui, H. Zhang, C. C. Wong, Mater. Lett., 2012, 86, 104-
107; (b) H. Yu, J. Yu, S. Liu, S. Mann, Chem. Mater., 2007,
19, 4327-4334.
10. (a) Y. Mao, J. He, X. Sun, W. Li, X. Lu, J. Gan, Z. Liu, L.
Gong, J. Chen, P. Liu, Y. Tong, Electrochim. Acta, 2012, 62,
1-7; (b) F. Hu, K. C. Chan, T. M. Yue, C. Surya, The Solid
Films, 2014, 550, 17-21.
11. (a) C. Neetzel, F. Muench, T. Matsutani, J. C. Jaud, J.
Broetz, T. Ohgai, W. Ensinger, Sens. Actuators B, 2015,
214, 189-196; (b) M. D. Susman, Y. Feldman, A. Vaskevich,
I. Rubinstein, ACS Nano, 2014, 8(1), 162-174; (c) Y. Xu, H.
Wang, Y. Yu, L. Tian, W. Zhao and B. Zhang, J. Phys. Chem.
C 2011, 115, 15288-15296.
Fig. 7 Proposed mechanism for ipso-hydroxylation of aryl boronic
acids with Cu2O nanoparticles
Conclusion
12. (a) P. Zhao, N. Li, D. Astruc, Coord. Chem. Rev., 2013,
257(3-4), 638-665; (b) M. S. Akhtar, J. Panwar, Y. S. Yun,
ACS Sustainable Chem. Eng., 2013, 1, 591-602; (c) X. Lan,
J. Zhang, H. Gao and T. Wang, CrystEngComm, 2011, 13,
633-636; (d) S. Sun and Z. Yang, RSC Adv. 2014, 4, 3804.
13. (a) J. S. Kumar, M. Jana, P. Khanra, P. Samanta, H. Koo, N.
C. Murmu, T. Kuila T. Electrochim. Acta, 2016, 193, 104-
115.
14. C. D. Djipa, M. Delmée, J. Q. Leclercq, J. Enthopharmacol.,
2000, 71(1-2), 307-313.
15. D. Á. Peña, N. Peña, L. Quitero, H. S. Roca, J.
Enthopharmacol., 2007, 112, 380-385.
16. S. Saikia, N. K. Mahnot, C. L. Mahanta, Food Bioscience,
2016, 13, 15-20.
17. G. Bonfanti, P. R. Bitencourt, K. S. de Bona, P. S. da Silva,
L. B. Jantsch, A. S. Pigatto, A. Boligon, M. L. Athyde, T. L.
Goncalves and M. B. Moretto, Molecules, 2013, 18, 9179-
9194.
Herein we have reported for the first time a facile, environment
friendly biogenic route to synthesis pure octahedral Cu2O NPs using
Syzygium jambos (L.) Alston leaves extracts. The synthesized NPs
were found in the average size range between 4 to 10 nm (TEM).
The biogenic Cu2O nanoparticles are directly utilised on water for
the ipso-hydroxylation of arylboronic acids with various
substituents with excellent yields. The catalyst works without using
H2O2, base, ligand, molecular oxygen and can be recycled several
times without significant loss of activity. The present catalytic
system shows better results and has some advantages in
comparison to other techniques to synthesis phenols from
arylboronic acids. We believe that this is the most greener and
efficient protocol for ipso-hydroxylation of arylboronic acids to
phenols from the environmental and economical point of view.
18. (a) A. Gogoi, U. Bora, Tetrahedron Lett., 2013, 54, 1821-
1823; (b) A. Mahanta, P. Adhikari, U. Bora, A. J. Thakur,
Tetrahedron Lett., 2015, 56, 1780-1783; (c) M. Gohain, M.
du Plessis, J. H. van Tonder, and B. C. B. Bezuidenhoubt,
Tetrahedron Lett., 2014, 55, 2082-2084; (d) A. Gogoi and
U. Bora, Tetrahedron Lett., 2013, 54, 1821-1823; (e) S.
Guo, L. Lu and H. Cai, Synlett, 2013, 24, 1712-1714.
19. (a) J. Xu, X. Wang, C. Shao, D. Su, G. Cheng, Y. Hu, Org.
Lett., 2010, 12(9), 1964-1967; (b) K. Inamoto, K. Nozawa,
M. Yonemoto and Y. Kondo, Chem. Commun. 2011, 47,
11775-11777; (c) Y. Q. Zhou, J. R. Chen, X. P. Liu, L. Q. Lu,
R. L. Davis, K. A. Jφrgensen and W. J. Xiao, Angew. Chem.
Int. Ed. 2012, 51, 784-788; (d) E. Kianmehr, M. Yahyaee, K.
Tabatabai, Tetrahedron Lett., 2007, 48(15), 2713-2715; (e)
P. Gogoi, P. Bezboruah, J. Gogoi and R. C. Boruah, Eur. J.
Org. Chem. 2013, 7291-7294.
Acknowledgement
BC gratefully acknowledges DST-SERB (project No.SB/FT/CS-
161/2012) for financial assistance, UGC-SAP and SAIF, NEHU-
Shillong for spectral data.
References:
1. I. Mukherjee, S. Chatterjee, N. A. Kulkarni, J. Phys. Chem. C,
2016, 120, 1077-1082.
2. (a) B. Tang, F. Wang, J. H. Li, Y. X. Xie, M. B. Zhang, J. Org.
Chem., 2007, 72, 6294-6297; (b) M. Faraji, M. Amini, A. P.
Anbari, Catal. Commun., 2016, 76, 72-75.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins