1
00
Can. J. Chem. Vol. 86, 2008
circulating systems, where the ratio of the column volume to
total circulating volume is maximized.
5. (a) J.S. Tsang, A.A. Neverov, and R.S. Brown. J. Am. Chem.
Soc. 125, 7602 (2003); (b) T. Liu, A.A. Neverov, J.S.W.
Tsang, and R.S. Brown. Org. Biomol. Chem. 3, 1525 (2005);
(
c) R.E. Lewis, A.A. Neverov, and R.S. Brown. Org. Biomol.
Conclusion
Chem. 3, 4082 (2005); (d) S.A. Melnychuk, A.A. Neverov,
and R.S. Brown. Angew. Chem. Int. Edit. 45, 1767 (2006).
. J.A.W. Tsang, A.A. Neverov, and R.S. Brown. Org. Biomol.
Chem. 2, 3457 (2004).
. A.A. Neverov and R.S. Brown. Org. Biomol. Chem. 2, 2245
(
. These comparisons are made under the reasonable assumption
that the background reaction is attributable to OCH at near
neutral pH values, and that the autoprotolysis constant of
methanol is 10
Sales. J. Chem. Soc., Perkin Trans. 1, 2, 1953 (1999).
. F.M. Menger and T. Tsuno. J. Am. Chem. Soc. 111, 4903
(
10. (a) Q. Lu, A. Singh, J.R. Deschamps, and E.L. Chang. Inorg.
Chim. Acta, 309, 82 (2000); (b) C.M. Hartshorn, A. Singh,
and E.L. Chang. J. Mater. Chem. 12, 602 (2002); (c) C.M.
Hartshorn, J.R. Deschamps, A. Singh, and E.L. Chang. React.
Funct. Polym. 55, 219 (2003).
In this work we have shown that polymer-supported metal
and (or) complex catalysts can be prepared by grafting a
ligand (7a or 8) onto a suitable chloromethylated polysty-
6
7
8
2
+
2+
rene resin, which can then be loaded with M (Cu or
2004).
2
+
Zn ). This catalytic matrix shows good activity for mediat-
ing the methanolysis of different kinds of OP esters
like O-ethyl-S-3,5-dichlorophenyl methylphosphonothioate
–
3
s
s
(
10), O-ethyl-O-4-nitrophenyl methylphosphonate (9), and
–16.77
. E. Bosch, F. Rived, M. Rosés, and J.
fenitrothion (11), which are simulants for V-agents, G-
agents, and P=S pesticides. In the most favourable case,
9
8 mg of DVB50-(II) 7a/Cu2 suspended in 2.5 mL of solu-
+
2
1989).
6
tion provides a factor of 2.9 × 10 in acceleration of the
methanolysis of fenitrothion over the background reaction at
s
s
pH = 9. The methanolysis reactivity is shown to be en-
hanced by a large porosity of the solids, which allows access
of the OP ester substrates to the catalytic centers. This mate-
rial can be used in column systems with a continuous flow
and may show some promise for larger scale applications to
cleanups of OP esters, where the contaminants can be dis-
solved in methanol that is passed through a column for de-
contamination.
11. (a) S.G. Srivatsan and S. Verma. Chem. Eur. J. 7, 828 (2001);
(
5
b) S.G. Srivatsan, M. Parvez, and S. Verma. Chem. Eur. J. 8,
184 (2002); (c) V. Chandraskhar, A. Athmoolan, S.G.
Srivatsan, P. Shanmuga Sundaram, S. Verma, A. Steiner, S.
Zacchini, and R. Butcher. Inorg. Chem. 41, 5162 (2002);
(
d) S.G. Srivatsan and S. Verma. Chem. Commun. (Cam-
bridge), 515 (2000).
2. A.I. Hanafy, V. Lykourinou-Tibbs, K.S. Bisht, and L.-J. Ming.
Inorg. Chim. Acta, 358, 1247 (2005).
3. S. Durie, K. Jerabek, C. Mason, and D.C. Sherrington.
Macromolecules, 35, 9665 (2002).
4. A. Chemin, H. Deleuze, and B. Maillard. Eur. Polym. J. 34,
Acknowledgements
1
1
1
1
The authors gratefully acknowledge the financial assis-
tance of the Natural Science and Engineering Research
Council of Canada (NSERC), Queen’s University, the Can-
ada Foundation for Innovation, and the Canada Council for
the Arts. MFM thanks NSERC for the award of a CGS-M
postgraduate scholarship EC thanks NSERC for the award of
a Summer Undergraduate Research Award, and KGC thanks
Queen’s University for a Summer Work Experience Award.
1
395 (1998).
5. (a) K. Binnemans, P. Lenaerts, K. Driesen, and C. Görller-
Warland. J. Mater. Chem. 14, 191 (2004); (b) P. Lenaerts, K.
Driesen, R. Van Deun, and K. Binnemans. Chem. Mater. 17,
2148 (2004).
1
1
6. P. Brunet and J.D. Wuest. J. Org. Chem. 61, 1847 (1996).
7. Y. Chauvin, D. Commereuc, and F. Dawans. Prog. Polym. Sci.
References
5
, 95 (1977).
1
2
3
. Y.-C. Yang, J.A. Baker, and J.R. Ward. Chem. Rev. 92, 1729
1992).
. (a) Y.-C. Yang. Acc. Chem. Res. 32, 109 (1999); (b) Y.-C.
Yang. Chem. Ind. (London), 334, (1995).
. (a) A. Toy and E.N. Walsh. Phosphorus chemistry in everyday
living. 2nd ed. American Chemical Society, Washington, DC.
18. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A.
Pierotti, J. Rouquerol, and T. Siemieniewska. Pure Appl.
Chem. 57, 603 (1985).
19. A. Guyot and M. Bartholin. Prog. Polym. Sci. 8, 277 (1982).
20. H. Jacobelli, M. Bartholin, and A. Guyot. Angew. Makromol.
Chem. 80, 31 (1979).
(
1
987. Chap. 18–20; (b) L.D. Quin. A guide to organo-
21. A. Guyot. Pure Appl. Chem. 60, 365 (1988).
s
phosphorus chemistry. Wiley, NY. 2000; (c) M.A. Gallo and
N.J. Lawryk. Organic phosphorus pesticides. The handbook of
pesticide toxicology. Academic Press, San Diego, CA. 1991;
22. For the measurement of pH in methanol see: G. Gibson, A.A.
s
Neverov, and R.S. Brown. Can. J. Chem. 81, 495 (2003).
23. R. Cacciapaglia, A. Casnati, L. Mandolini, D.N. Reinhoudt, R.
Salvio, A. Sartori, and R. Ungaro. Inorg. Chim. Acta, 360, 981
(2007).
(
d) P.J. Chernier. Survey of industrial chemistry. 2nd ed. VCH,
NY. 1992. pp 389–417; (e) K.A. Hassall. The biochemistry
and uses of pesticides. 2nd ed. VSH, Weiheim, Germany.
24. A.A. Neverov, N.E. Sunderland, and R.S. Brown. Org.
Biomol. Chem. 3, 65 (2005).
1
990. pp 269–275.
4
. H. Morales-Rojas and R.S. Moss. Chem Rev. 102, 2497 (2002)
25. W. Desloges, A.A Neverov, and R.S. Brown. Inorg Chem.
and refs. cited therein.
43(21), 6752 (2004).
©
2007 NRC Canada