Journal of the American Chemical Society
Page 4 of 6
(
orange box, Figure 5, panel C) it is clear that the enzyme
available free of charge on the ACS Publications website at
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
stabilizes formation of an allylic cation-like TS, which should
have five coplanar carbon atoms. Thus, we reason that the
2
AUTHOR INFORMATION
Corresponding Author
enzyme binds 2 in a H half-chair with a resulting catalyzed
3
formation of an E allylic cation or allylic cation-like TS (rose
3
box, Figure 5), a species that is conformationally similar to
4
the glycosylation TS ( H ). In the case of covalent inhibitor 3,
3
σ-bond participation requires a bisected geometry; however,
the resultant cation likely remains in the original bisected
geometry due to the high rotational barrier in bicyclobutoni-
Notes
The authors declare no competing financial interests.
3
0
um ions. We conclude that covalent labeling by 2, relative
to 3, involves a reaction coordinate that more closely match-
es that of the natural substrates.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
ACKNOWLEDGMENT
We thank Ms. Kyung-Mee Moon, Mr. Jason Rogalski, and Dr.
Leonard Foster for mass spectral data acquisition. This work
was supported by a Natural Sciences and Engineering Re-
search Council of Canada Discovery Grant (AJB: #121348-
Table 3. Relative proficiencies for dealkylation of the
yeast α-glucosidase covalent intermediates.
–
1 a
2012).
core
kdeglyc or kreact kuncat (s )
CPrel
–
1
structure
(s )
REFERENCES
–
1 b
–5
–8
pyranosyl
>29 s
4.61
4.20
1.49
×
10
1.0
(
1)
H. S. Org Biomol Chem 2011, 9, 5908-5926.
2) Moremen, K. W.; Tiemeyer, M.; Nairn, A. V. Nat. Rev.
Mol. Cell. Biol. 2012, 13, 448-462.
Witte, M. D.; van der Marel, G. A.; Aerts, J. M.; Overkleeft,
–
5
–4
cyclohexenyl 1.19
×
×
10
×
10
<4.6
<2.4
×
×
10
(
–
6
–6
10
–6
bicyclo[4.1.0] 2.17
10
×
10
a
b
(3)
Schnaar, R. L.; Gerardy-Schahn, R.; Hildebrandt, H. Phys-
Supporting Information (Table S2) Data for most reactive
iol Rev 2014, 94, 461-518.
pyridinium glycoside for which k reports on the glycosyla-
cat
(4)
Lombard, V.; Ramulu, H. G.; Drula, E.; Coutinho, P. M.;
12
tion step.
Henrissat, B. Nucleic Acids Res. 2014, 42, D490-D495.
(
5)
2, 539-555.
(6) Davies, G. J.; Planas, A.; Rovira, C. Acc. Chem. Res. 2012,
45, 308-316.
Vocadlo, D. J.; Davies, G. J. Curr. Opin. Chem. Biol. 2008,
Interestingly, the relative proficiencies for pseudo-
deglycosylation are markedly different (Table 3) than those
for the initial labeling event (Table 2). That is, the natural β-
glucopyranosyl enzyme intermediate is hydrolyzed much
more efficiently relative to the allylic and bicyclic covalent
1
(7)
Mhlongo, N. N.; Skelton, A. A.; Kruger, G.; Soliman, M. E.
S.; Williams, I. H. Proteins 2014, 82, 1747-1755.
(
8)
Sinnott, M. L. Chem. Rev. 1990, 90, 1171-1202.
intermediates. We reason that the enzymatic motions that
4
(9)
Sinnott, M. Carbohydrate Chemistry and Biochemistry:
promote distortion of the C glycosyl unit in the intermedi-
1
Structure and Mechanism; 2nd ed.; RSC Publishing: Cambridge,
2013.
ate so that it undergoes hydrolysis to form α-glucopyranose
1
in a S skew boat are much less effective at promoting cleav-
3
(10)
Speciale, G.; Thompson, A. J.; Davies, G. J.; Williams, S. J.
age of the covalent enzyme-intermediates by formation of
allylic and bicyclobutonium ion-like TSs, which based on the
principle of microscopic reversibility must involve TS con-
formations similar to those for intermediate formation.
Curr. Opin. Struct. Biol. 2014, 28, 1-13.
(11)
Uitdehaag, J. C. M.; Mosi, R.; Kalk, K. H.; van der Veen, B.
A.; Dijkhuizen, L.; Withers, S. G.; Dijkstra, B. W. Nat. Struct. Biol.
1999, 6, 432-436.
(12)
13)
Hosie, L.; Sinnott, M. L. Biochem. J. 1985, 226, 437-446.
Huang, X. C.; Tanaka, K. S. E.; Bennet, A. J. J. Am. Chem.
Finally, we envision that these two families of covalent in-
hibitors will be useful research tools for biological studies.
(
Soc. 1997, 119, 11147-11154.
Our covalent inhibitors, unlike other inactivators such as
(14)
Chakladar, S.; Wang, Y.; Clark, T.; Cheng, L.; Ko, S.; Vo-
31-33
cyclophellitol and analogues
that irreversibly label glyco-
cadlo, D. J.; Bennet, A. J. Nat. Commun. 2014, 5, 5590.
side hydrolases, show a time dependent loss and return of
enzymatic activity. Moreover, we should be able to custom-
ize the rates of covalent-labeling (by changing the leaving
group) and reactivation (by choosing either the cyclohexenyl
or the bicyclo[4.1.0]heptyl skeleton). That is, our two classes
of reversible covalent inhibitors could be used to monitor
cellular responses to time-dependent changes in GH activity.
Also, if the rates for each process (pseudo-glycosylation and
deglycosylation) both depend on the pyranosylium ion-like
(15)
Adamson, C.; Pengelly, R.; Shamsi Kazem Abadi, S.; Chak-
ladar, S.; Draper, J.; Britton, R.; Gloster, T.; Bennet, A. J. Angew.
Chem., Int. Ed. Engl. 2016, 14978–14982.
(
16)
2, 645-656.
17) Lim, C.; Baek, D. J.; Kim, D.; Youn, S. W.; Kim, S. Org.
Lett. 2009, 11, 2583-2586.
Kapferer, P.; Sarabia, F.; Vasella, A. Helv. Chim. Acta 1999,
8
(
(18)
Lowry, T. H.; Richardson, K. S. Mechanism and theory in
organic chemistry; 3rd ed.; Harper & Row: New York, 1987.
(19)
Roberts, J. D.; Mazur, R. H. J. Am. Chem. Soc. 1951, 73,
4
3
2,5 5,6,10
2509-2520.
TS ( H , H , B , or B)
and a conformation for orbital
3
4
2,5
(
20)
224-4229.
(21) Moss, R. A.; Zheng, F.; Johnson, L. A.; Sauers, R. R. J. Phys.
Org. Chem. 2001, 14, 400-406.
22) Harris, J. M.; Moffatt, J. R.; Case, M. G.; Clarke, F. W.; Pol-
Friedrich, E. C.; Jassawalla, J. D. C. J. Org. Chem. 1979, 44,
participation we suggest that a simple analysis using Figure 5
will allow researchers to target the optimal carbasugar ana-
logue for their particular GH.
4
(
ASSOCIATED CONTENT
Supporting Information
ley, J. S.; Morgan, T. K., Jr.; Ford, T. M.; Murray, R. K., Jr. J. Org.
Chem. 1982, 47, 2740-2744.
(
23)
Huang, X.; Tanaka, K. S. E.; Bennet, A. J. J. Am. Chem. Soc.
1998, 120, 1405-1409.
Full experimental procedures, spectroscopic data, and rate
constants for hydrolysis of 10. Supporting Information is
(
24)
de Meijere, A. Angew. Chem., Int. Ed. Engl. 1979, 18, 809-
8
26.
4
ACS Paragon Plus Environment