Angewandte Chemie International Edition
10.1002/anie.201804402
COMMUNICATION
coassembly system, the chirality can be transferred from LGAn or DGAn to
PdOEP-C18 through entanglement of hydrophobic chains. (b) In the
adsorption assembly system, chirality transfer was blocked due to weak
interaction between LGAn (DGAn) and PdOEP-C18.
Meskers, T. M. Swager. J. Am. Chem. Soc. 2006, 128, 9030-9031; d) A.
R. Hirst, S. Roy, M. Arora, A. K. Das, N. Hodson, P. Murray, S. Marshall,
N. Javid, J. Sefcik, J. Boekhoven, J. H. van Esch, S. Santabarbara, N.
T. Hunt, R. V. Ulijn. Nat. Chem. 2010, 2, 1089-1094; e) E. Yashima, N.
Ousaka, D. Taura, K. Shimomura, T. Ikai, K. Maeda. Chem. Rev. 2016,
116, 13752-13990; f) Y. Tobe, K. Tahara, S. De Feyter. Bull. Chem.
It should be further noted that the assembly pathway has a
significant impact on the final assembly structure as well as the
properties. We compared the co-assembly of donor and
acceptor via co-gelation with the system of simply adsorption
Soc. Jpn. 2016, 89, 1277-1306; g) J. Labuta, J. P. Hill, S. Ishihara, L.
Hanykova, K. Ariga. Acc. Chem. Res. 2015, 48, 521-529; h) V. K.
Praveen, S. S. Babu, C. Vijayakumar, R. Varghese, A. Ajayaghosh. Bull.
Chem. Soc. Jpn. 2008, 81, 1196-1211; i) A. R. A. Palmans, E. W.
Meijer. Angew. Chem. Int. Ed. 2007, 46, 8948-8968.
(Figure 5). In the adsorption assembly pathway, LGAn (DGAn)
[
[
4]
5]
D. Yang, P. Duan, L. Zhang, M. Liu. Nat. Commun. 2017, 8, 15727.
R. Sethy, J. Kumar, R. Metivier, M. Louis, K. Nakatani, N. M. T. Mecheri,
A. Subhakumari, K. G. Thomas, T. Kawai, T. Nakashima. Angew.
Chem. Int. Ed. 2017, 56, 15053-15057.
gelator was first assembled into supramolecular gel, and then
PdOEP-C18 solution was allowed to freely diffuse into the gel
matrix. In this case, the chirality transfer from LGAn (DGAn)
gelator to PdOEP-C18 could not be realized (Figure 5b). In
addition, LGAn/PdOEP-C18 or DGAn/PdOEP-C18 in deaerated
toluene formed by adsorption pathway showed only upconverted
CPL at 460 nm excited with 532 nm, while without
downconverted CPL (see the experimental details in Figure S12).
[6]
a) S. Baluschev, V. Yakutkin, T. Miteva, Y. Avlasevich, S. Chernov, S.
Aleshchenkov, G. Nelles, A. Cheprakov, A. Yasuda, K. Mullen, G.
Wegner. Angew. Chem. Int. Ed. 2007, 46, 7693-7696; b) P. Duan, N.
Yanai, N. Kimizuka. J. Am. Chem. Soc. 2013, 135, 19056-19059; c) C.
Fan, W. Wu, J. J. Chruma, J. Zhao, C. Yang. J. Am. Chem. Soc. 2016,
138, 15405-15412; d) J. Han, P. Duan, X. Li, M. Liu. J. Am. Chem. Soc.
2
Although larger excitation power at 23439 mW/cm was used,
2017, 139, 9783-9786; e) R. R. Islangulov, J. Lott, C. Weder, F. N.
no downconverted CPL can be observed (Figure S13). This
result indicated that the ordered arrangement of the donor and
acceptor are vitally important in realizing the dual upconverted
and downconverted CPL.
Castellano. J. Am. Chem. Soc. 2007, 129, 12652-12653; f) J.-H. Kim,
J.-H. Kim. J. Am. Chem. Soc. 2012, 134, 17478-17481; g) A. Monguzzi,
R. Tubino, S. Hoseinkhani, M. Campione, F. Meinardi. Phys. Chem.
Chem. Phys. 2012, 14, 4322-4332; h) A. A. Turshatov, S. B. Baluschev.
"
Triplet-Triplet Annihilation Assisted Upconversion: All-Optical Tools for
In summary, inspired by the sophisticated information
Probing Physical Parameter of Soft Matter." Handbook of Coherent-
Domain Optical Methods. Springer, New York, NY, 2013. 1289-1311; i)
R. Vadrucci, C. Weder, Y. C. Simon. J. Mater. Chem. C 2014, 2, 2837-
propagating in biological systems, we developed
a
supramolecular system which exhibit transmission and
communication of both chiroptical information and excited
energy. Coassembled UC arrays, which were composed of
achiral energy donor and chiral energy acceptor, showed dual
upconverted and downconverted CPL under the 532 nm laser
excitation. The integration of TTA-UC with chirality transfer in
assembled system thus renovates the field by introducing the
chiral assembly regulated triplet energy transfer. The concept of
molecular self-assembly regulated interplay between chiral
information and excited energy provides a new perspective for
designing chiral functional materials.
2841; j) J. Zhao, S. Ji, H. Guo. Rsc Adv. 2011, 1, 937-950.
[
7]
X. Zhu, Y. Li, P. Duan, M. Liu. Chem. Eur. J. 2010, 16, 8034 – 8040.
N. Miyakawa, T. Kiba, S.-I. Sato. Mol. Cryst. Liq. Cryst. 2010, 520, 469-
476.
[8]
[9]
Y. Hong, J. W. Y. Lam, B. Z. Tang. Chem. Soc. Rev. 2011, 40, 5361-
5388.
[
[
10] a) F. D. Lewis, L. G. Zhang, X. Y. Liu, X. B. Zuo, D. M. Tiede, H. Long,
G. C. Schatz. J. Am. Chem. Soc. 2005, 127, 14445-14453; b) S.
Masiero, R. Trotta, S. Pieraccini, S. De Tito, R. Perone, A. Randazzo,
G. P. Spada. Org. Biomol. Chem. 2010, 8, 2683-2692; c) G. Pescitelli,
L. Di Bari, N. Berova. Chem. Soc. Rev. 2011, 40, 4603-4625; d) G.
Pescitelli, L. Di Bari, N. Berova. Chem. Soc. Rev. 2014, 43, 5211-5233.
11] a) Y. Nakano, Y. Liu, M. Fujiki. Polym. Chem. 2010, 1, 460-469; b) N. A.
A. Rahim, M. Fujiki. Polym. Chem. 2016, 7, 4618-4629; c) J. Zhang, W.
Feng, H. Zhang, Z. Wang, H. A. Calcaterra, B. Yeom, P. A. Hu, N. A.
Kotov. Nat. Commun. 2016, 7,10701; d) Y. Duan, L. Han, J. Zhang, S.
Asahina, Z. Huang, L. Shi, B. Wang, Y. Cao, Y. Yao, L. Ma, C. Wang, R.
K. Dukor, L. Sun, C. Jiang, Z. Tang, L. A. Nafie, S. Che. Angew. Chem.
Int. Ed. 2015, 54, 15170-15175; e) J. R. Brandt, X. Wang, Y. Yang, A. J.
Campbell, M. J. Fuchter. J. Am. Chem. Soc. 2016, 138, 9743-9746.
12] J. P. Riehl, F. S. Richardson. Chem. Rev. 1986, 86, 1-16.
Acknowledgements
This work was supported by the Strategic Priority Research
Program of the Chinese Academy of Sciences (XDB12020200),
National Natural Science Foundation of China (51673050 and
91027042); The Ministry of Science and Technology of China
[
[
(2016YFA0203400) and New Hundred-Talent Program research
13] a) J. Kumar, T. Nakashima, T. Kawai. J. Phys. Chem. Lett. 2015, 6,
fund of the Chinese Academy of Sciences. Key Research
Program of Frontier Sciences, CAS, (QYZDJ-SSW-SLH044).
3445-3452; b) J. Kumar, T. Nakashima, H. Tsumatori, T. Kawai. J.
Phys. Chem. Lett. 2014, 5, 316-321.
[
14] a) E. Castiglioni, S. Abbate, F. Lebon, G. Longhi. Chirality 2012, 24,
725-730; b) G. Longhi, E. Castiglioni, J. Koshoubu, G. Mazzeo, S.
Abbate. Chirality 2016, 28, 696-707.
Keywords: supramolecular chirality • self-assembly • circularly
polarized luminescence • upconversion
[
[
15] F. Deng, J. Blumhoff, F. N. Castellano. J. Phys. Chem. A 2013, 117,
4412-4419.
[
1]
a) G. Blauer, N. Sreerama, R. W. Woody. Biochemistry 1993, 32, 6674-
16] a) M. Mahboub, Z. Huang, M. L. Tang. Nano Lett. 2016, 16, 7169-7175;
b) B. Wang, B. Sun, X. Wang, C. Ye, P. Ding, Z. Liang, Z. Chen, X. Tao,
L. Wu. J. Phys. Chem. C 2014, 118, 1417-1425; c) Q. Liu, T. Yang, W.
Feng, F. Li. J. Am. Chem. Soc. 2012, 134, 5390-5397; d) S. P. Hill, T.
Dilbeck, E. Baduell, K. Hanson. Acs Energy Lett. 2016, 1, 3-8; e) V.
Gray, D. Dzebo, M. Abrahamsson, B. Albinsson, K. Moth-Poulsen.
Phys. Chem. Chem. Phys. 2014, 16, 10345-10352; f) P. Duan, N.
Yanai, H. Nagatomi, N. Kimizuka. J. Am. Chem. Soc. 2015, 137, 1887-
6
3
7
679; b) L. Pauling, R. B. Corey. Proc. Natl. Acad. Sci. U. S. A. 1951,
7, 729-740; c) J. D. Watson, F. H. C. Crick. Nature 1953, 171, 737-
38.
[
2]
a) M. R. Wasielewski. J. Org. Chem. 2006, 71, 5051-5066; b) J. P.
Dekker, E. J. Boekema. Biochim. Biophys. Acta-Bioenerg. 2005, 1706,
12-39; c) D. Beljonne, C. Curutchet, G. D. Scholes, R. J. Silbey. J. Phys.
Chem. 2009, 113, 6583-6599; d) J. Struempfer, M. Sener, K.
B
Schulten. J. Phys. Chem. Lett. 2012, 3, 536-542.
1894.
[
3]
a) P. K. Vemula, G. John. Acc. Chem. Res. 2008, 41, 769-782; b) R. V.
Ulijn. J. Mater. Chem. 2006, 16, 2217-2225; c) A. Satrijo, S. C. J.
[
17] a) Y. Y. Cheng, B. Fueckel, T. Khoury, R. G. C. R. Clady, M. J. Y.
Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, T. W. Schmidt. J. Phys.
This article is protected by copyright. All rights reserved.